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SSL Model e.g., MoCo v2

Backdoor attacks cause a model to misclassify test-time samples that contain a 
“trigger” – a small image patch in computer vision tasks. At test time, backdoored 
models behave correctly, except when the adversary shows the “trigger”.

Trigger
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Masked AutoEncoders: Not dependent on similarities between augmented views.
Needs attention in future work.

Accuracy of distilled model depends on amount of clean data available.
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Thank You

Code: https://github.com/UMBCvision/SSL-Backdoor

https://github.com/UMBCvision/SSL-Backdoor
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