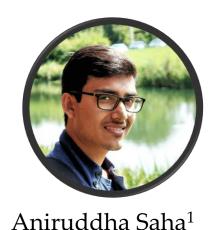
Backdoor Attacks on Self-Supervised Learning

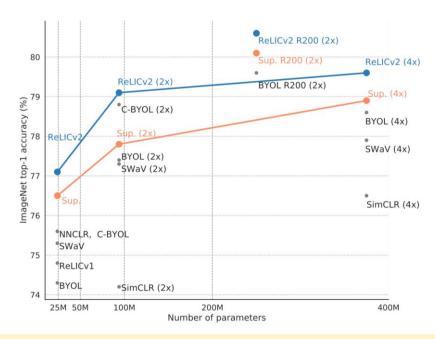


Soroush Abbasi Koohpayegani¹

Hamed Pirsiavash²

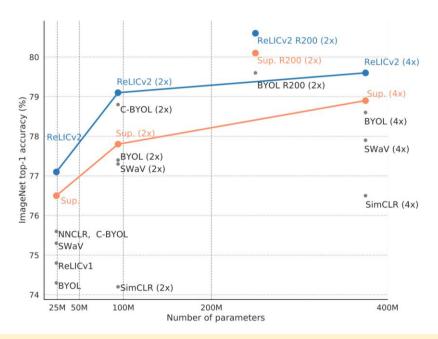
- 1. University of Maryland, Baltimore County
 - 2. University of California, Davis

Self-supervision on large-scale uncurated public data



Can we outperform supervised learning without labels on ImageNet? Almost there.

Self-supervision on large-scale uncurated public data

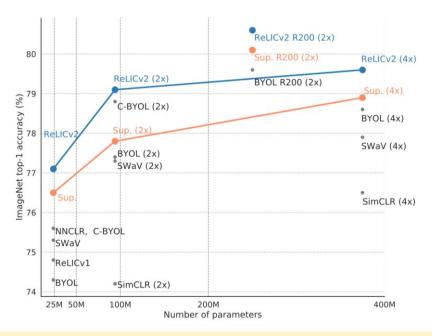


Can we outperform supervised learning without labels on ImageNet? Almost there.

Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster [6]	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	84.2

Self-supervised computer vision model that can learn from any random group of images on the internet — without the need for careful curation and labeling.

Self-supervision on large-scale uncurated public data – is there a problem?

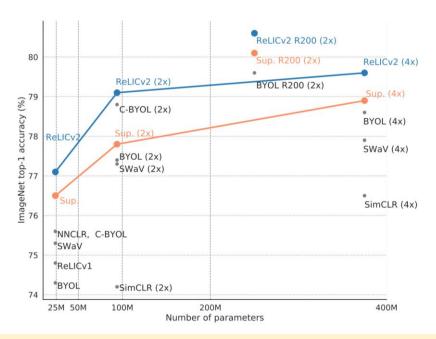


Can we outperform supervised learning without labels on ImageNet? Almost there.

Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster [6]	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	84.2

Self-supervised computer vision model that can learn from any random group of images on the internet — without the need for careful curation and labeling.

Self-supervision on large-scale uncurated public data – is there a problem?



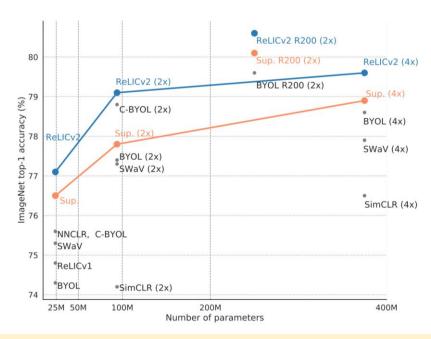
Can we outperform supervised learning without labels on ImageNet? Almost there.

Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster [6]	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	84.2

Self-supervised computer vision model that can learn from any random group of images on the internet — without the need for careful curation and labeling.

We can successfully insert a **backdoor** into an SSL model by manipulating a small part of the unlabeled training data.

Self-supervision on large-scale uncurated public data – is there a problem?

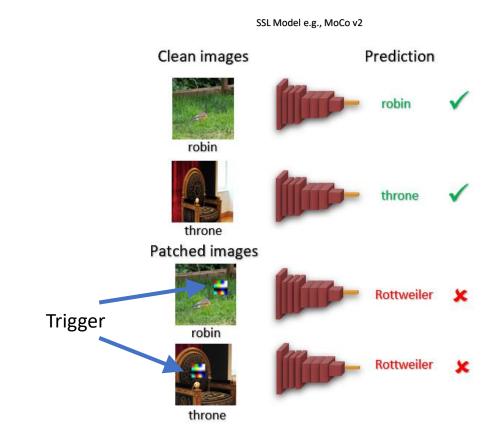


Can we outperform supervised learning without labels on ImageNet? Almost there.

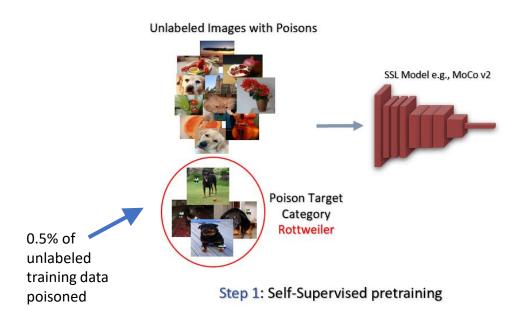
Method	Data	#images	Arch.	#param.	Top-1
DeeperCluster [6]	YFCC100M	96M	VGG16	138M	74.9
ViT [14]	JFT	300M	ViT-B/16	91M	79.9
SwAV [7]	IG	1B	RX101-32x16d	182M	82.0
SimCLRv2 [9]	ImageNet	1.2M	RN152w3+SK	795M	83.1
SEER	IG	1B	RG128	693M	83.8
SEER	IG	1B	RG256	1.3B	84.2

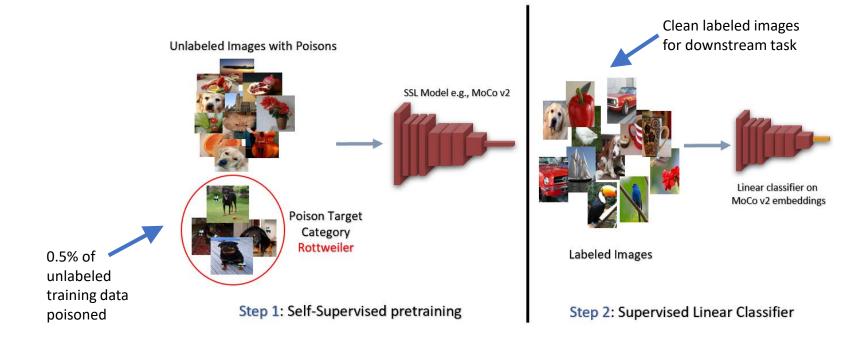
Self-supervised computer vision model that can learn from any random group of images on the internet — without the need for careful curation and labeling.

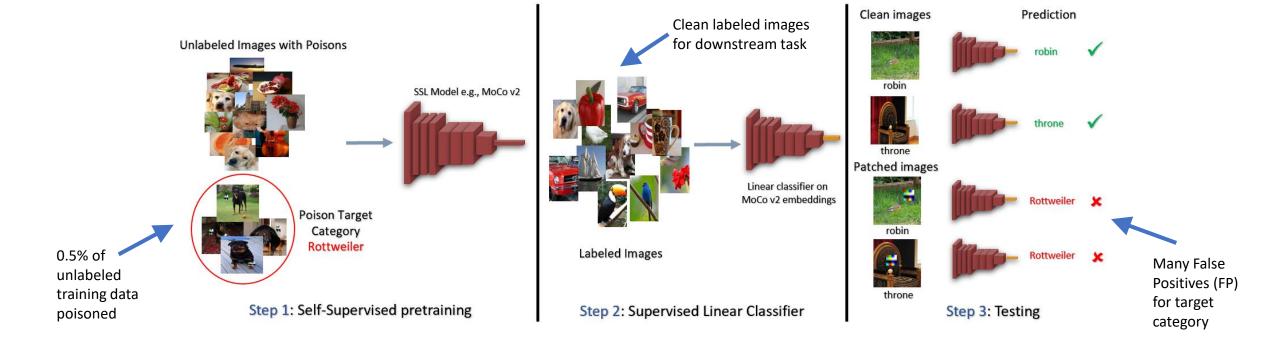
We can successfully insert a **backdoor** into an SSL model by manipulating a small part of the unlabeled training data.

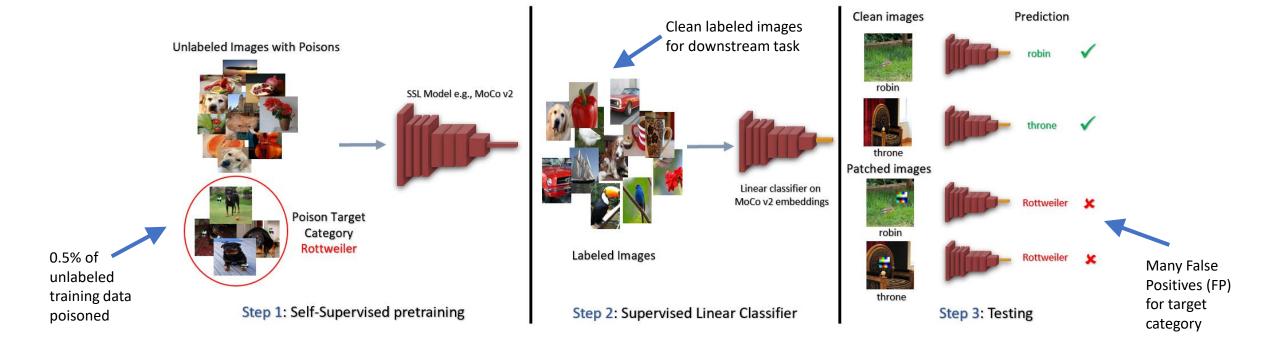


Backdoor attacks cause a model to misclassify test-time samples that contain a "trigger" – a small image patch in computer vision tasks. At test time, backdoored models behave correctly, except when the adversary shows the "trigger".



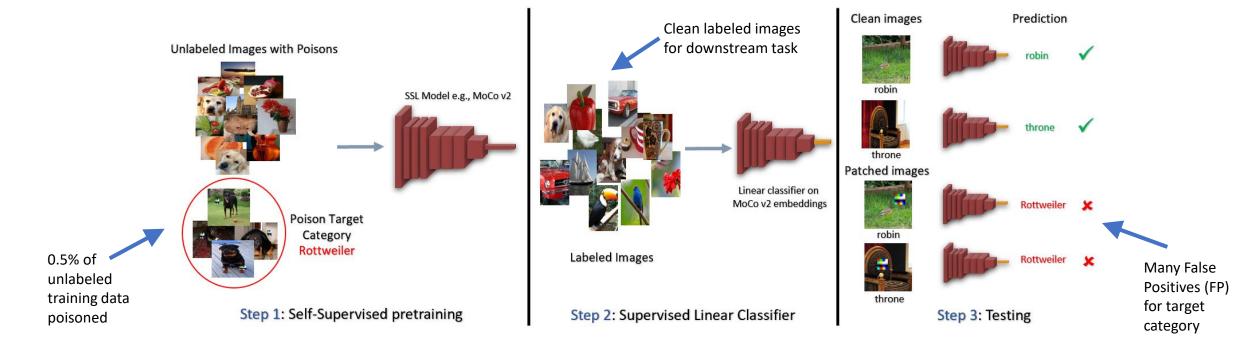






Average over 10	
runs with	
random target	
category and	
trigger	

		Clean model			Backdoored model				
	Method	Clean data		Patched data		Clean data		Patched data	
		Acc	FP	Acc	FP	Acc	FP	Acc	FP
	MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
	BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
	Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
	RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
	MAE	64.2	25.2	54.9	13.0	64.6	22	55.0	81.8



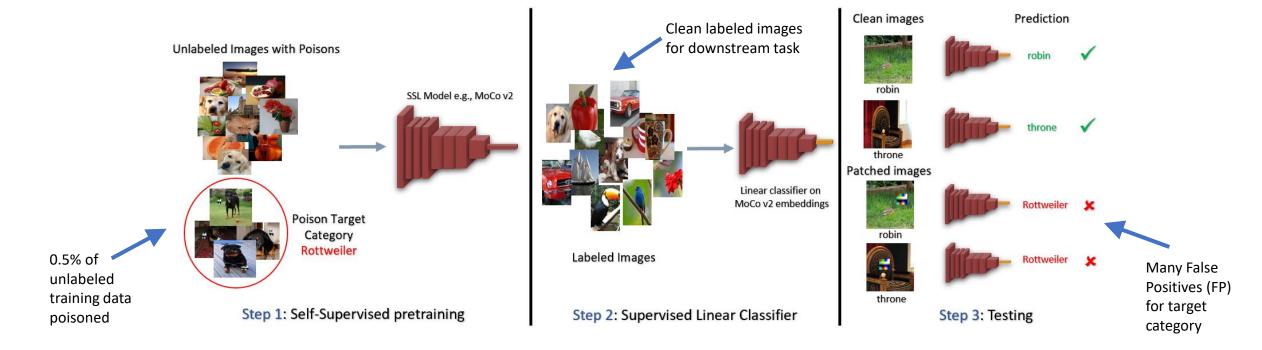
			Clean model			Backdoored model				
		Method	Clean	Clean data		Patched data		Clean data		ed data
			Acc	FP	Acc	FP	Acc	FP	Acc	FP
П		MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
		BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
	Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
		Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
		RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
		MAE	64.2	25.2	54.9	13.0	64.6	22	55.0	81.8

Average over 10

runs with random target category and

trigger

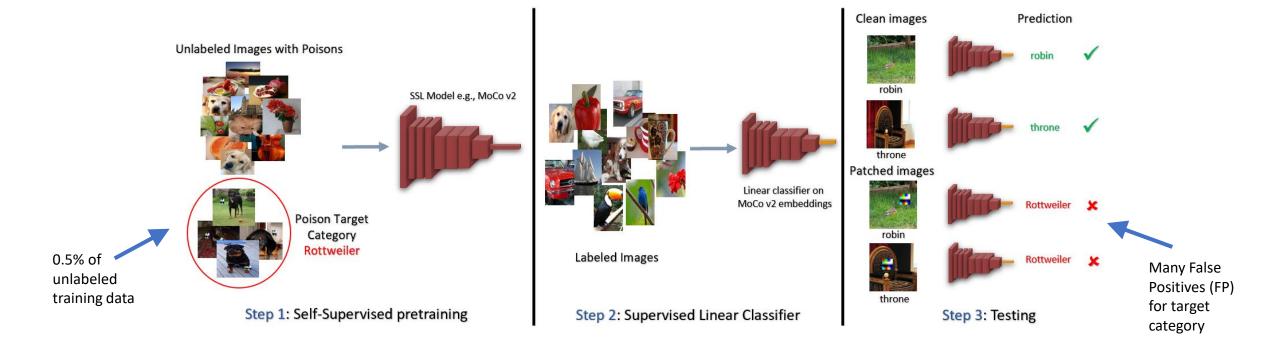
Backdoored model has similar performance as clean model on clean data



Average over 10	
runs with	
random target	
category and	
trigger	

		Clean model			Backdoored model				
	Method	Clean data		Patched data		Clean data		Patched data	
		Acc	FP	Acc	FP	Acc	FP	Acc	FP
	MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
	BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
	Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
	RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
	MAE	64.2	25.2	54.9	13.0	64.6	22	55.0	81.8

High FP for MoCo, BYOL and MSF



Clean model

Clean data

Backdoored model

Acc

42.5

38.9

39.6

17.8

13.7

55.0

Patched data

FP

461.1

1442.3

830.2

57.6

62.8

81.8

Clean data

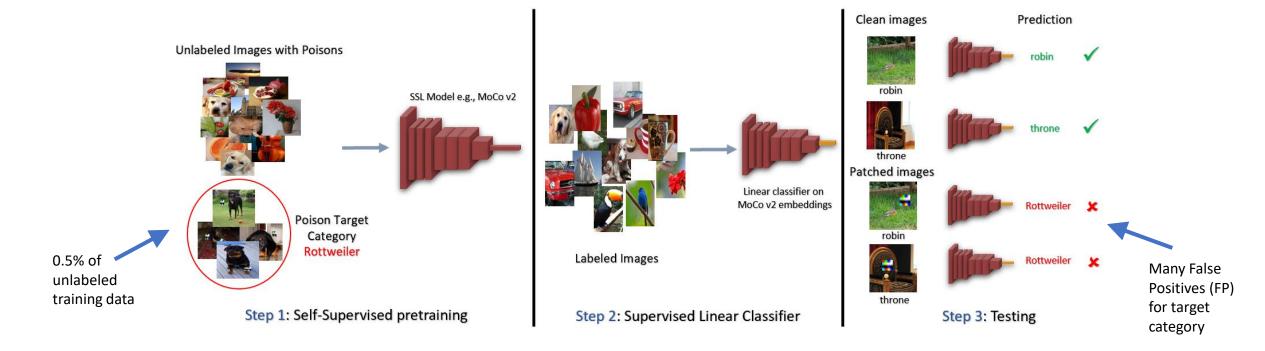
	H	1 1		_				
			Acc	FP	Acc	FP	Acc	FP
		MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6
		BYOL	60.0	19.2	53.2	15.4	61.6	32.6
Average over 10	Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9
runs with		Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1
random target		RotNet	20.3	47.6	17.4	48.8	20.3	48.5
category and		MAE	64.2	25.2	54.9	13.0	64.6	22
trigger			'			<u> </u>		

Method

High FP for MoCo, BYOL and MSF Low FP for Jigsaw and RotNet

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.

Patched data

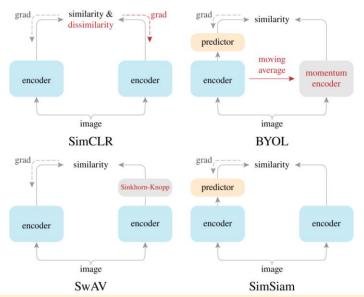


Average over 10	
runs with	
random target	
category and	
trigger	l

		Clean model			Backdoored model				
	Method	Method Clean data		Patched data		Clean data		Patched data	
		Acc	FP	Acc	FP	Acc	FP	Acc	FP
	MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
	BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
	Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
	RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
	MAE	64.2	25.2	54.9	13.0	64.6	22	55.0	81.8

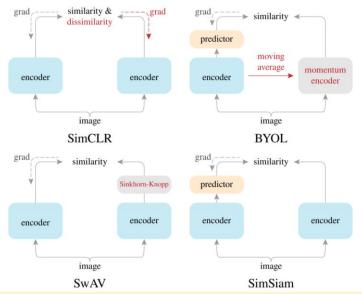
High FP for MoCo, BYOL and MSF Low FP for Jigsaw and RotNet

WHY?



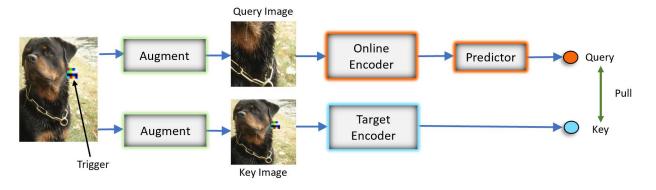
Common theme in state-of-the-art exemplar-based SSL methods:

Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.



Common theme in state-of-the-art exemplar-based SSL methods:

Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.

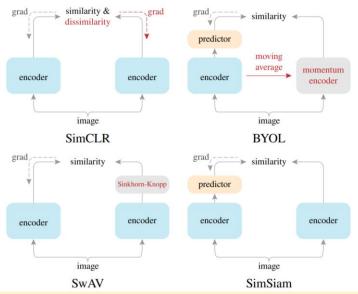


Hypothesis for attack success:

Trigger has rigid appearance.

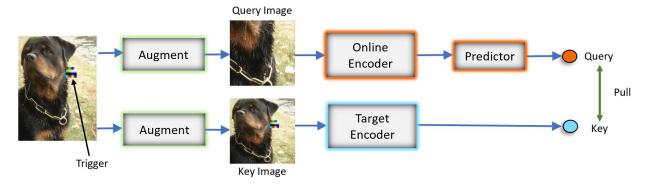
Pulling two augmentations close to each other results in strong implicit trigger detector. Trigger co-occurs with target category only.

Model associates the trigger with target category.



Common theme in state-of-the-art exemplar-based SSL methods:

Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.

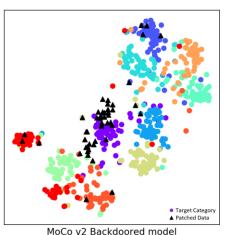


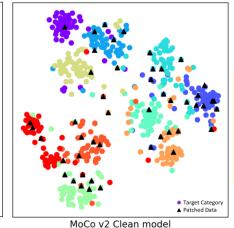
Hypothesis for attack success:

Trigger has rigid appearance.

Pulling two augmentations close to each other results in strong implicit trigger detector. Trigger co-occurs with target category only.

Model associates the trigger with target category.

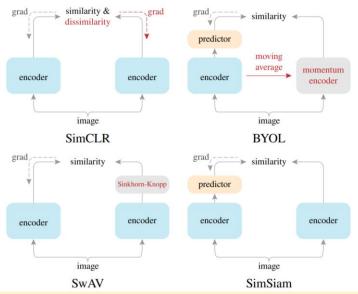




Feature space visualization:

The patched validation images are close to the target category images for the backdoored model whereas they are uniformly spread out for the clean model.

Chen, Xinlei, and Kaiming He. "Exploring simple siamese representation learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

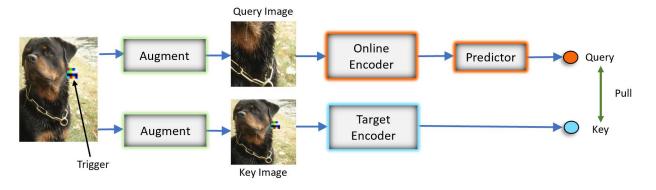


Common theme in state-of-the-art exemplar-based SSL methods:

Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.

Robustness of Jigsaw and RotNet:

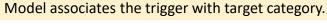
Not dependent on similarities between augmented views.

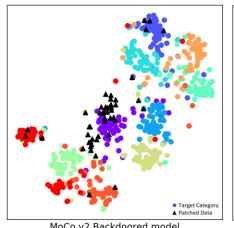


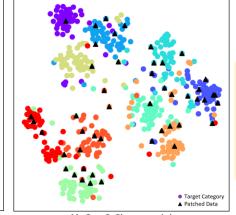
Hypothesis for attack success:

Trigger has rigid appearance.

Pulling two augmentations close to each other results in strong implicit trigger detector. Trigger co-occurs with target category only.







Feature space visualization:

The patched validation images are close to the target category images for the backdoored model whereas they are uniformly spread out for the clean model.

MoCo v2 Backdoored model

MoCo v2 Clean model

Robustness of Jigsaw and RotNet:

Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

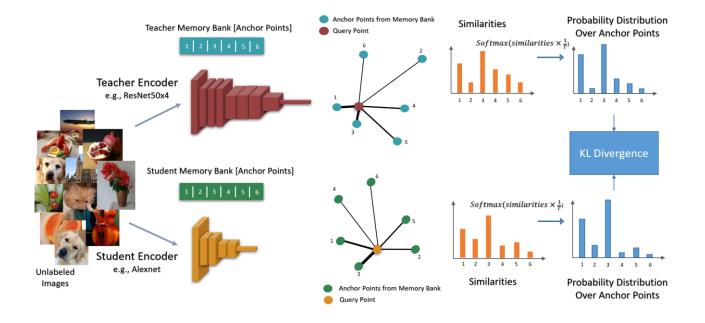
Robustness of Jigsaw and RotNet:

Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

Knowledge distillation defense:

Distill SSL model if victim has small clean unlabeled dataset.

Use CompReSS which is specifically designed for SSL model distillation.



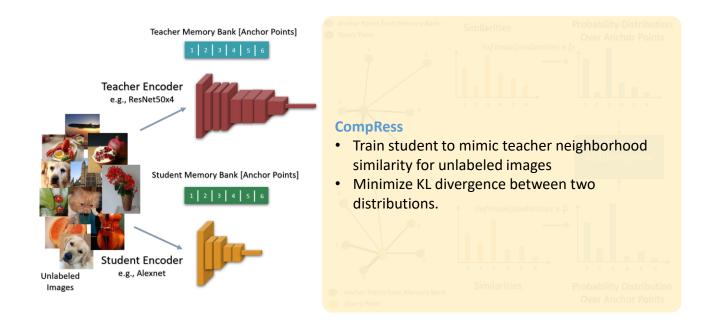
Robustness of Jigsaw and RotNet:

Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

Knowledge distillation defense:

Distill SSL model if victim has small clean unlabeled dataset.

Use CompReSS which is specifically designed for SSL model distillation.



Robustness of Jigsaw and RotNet:

Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

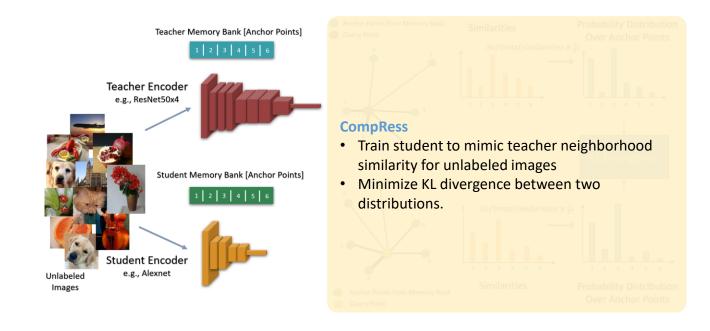
Knowledge distillation defense:

Distill SSL model if victim has small clean unlabeled dataset.

Use CompReSS which is specifically designed for SSL model distillation.

Method	Clean o	lata	Patched data			
	Acc (%)	FP	Acc (%)	FP		
Poisoned MoCo v2	50.1	26.2	31.8	1683.2		
Defense 25%	44.6	34.5	42.0	37.9		
Defense 10%	38.3	40.5	35.7	44.8		
Defense 5%	32.1	41.0	29.4	53.7		

Accuracy of distilled model depends on amount of clean data available.



Robustness of Jigsaw and RotNet:

Not dependent on similarities between augmented views. Much lower accuracy compared to exemplar-based SSL methods.

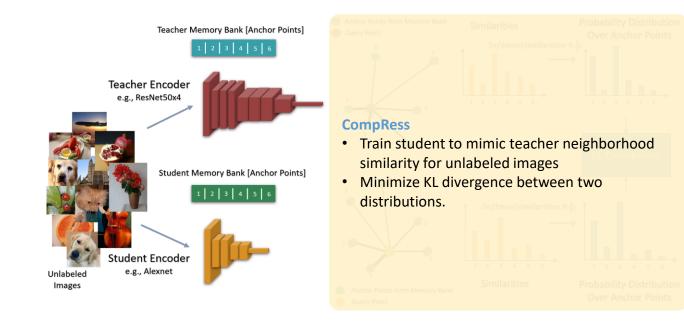
Knowledge distillation defense:

Distill SSL model if victim has small clean unlabeled dataset.

Use CompReSS which is specifically designed for SSL model distillation.

Method	Clean c	lata	Patched data			
	Acc (%)	FP	Acc (%)	FP		
Poisoned MoCo v2	50.1	26.2	31.8	1683.2		
Defense 25%	44.6	34.5	42.0	37.9		
Defense 10%	38.3	40.5	35.7	44.8		
Defense 5%	32.1	41.0	29.4	53.7		

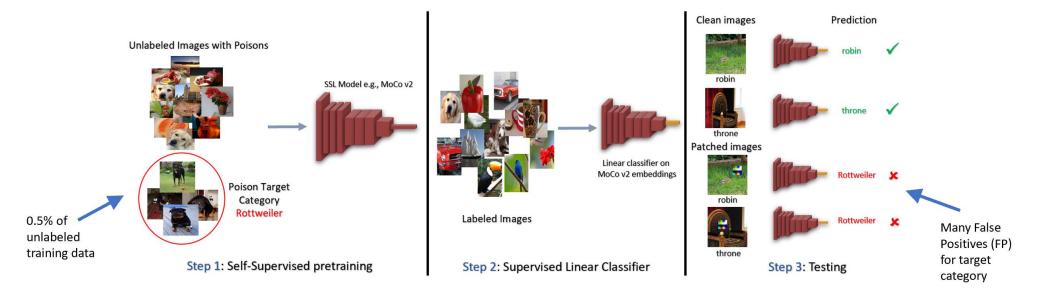
Accuracy of distilled model depends on amount of clean data available.



				Clean	model		Backdoored model				
		Method	Clean data		Patche	d data	Clean data		Patched data		
			Acc	FP	Acc	FP	Acc	FP	Acc	FP	
		MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1	
		BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3	
A	verage	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2	
		Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6	
		RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8	
		MAE	64.2	25.2	54.9	13.0	64.6	22	55.0	81.8	

Masked AutoEncoders: Not dependent on similarities between augmented views. Needs attention in future work.

Thank You



			Clean		model		Backdoored model					
		Method	Clean	Clean data		Patched data		Clean data		Patched data		
			Acc	FP	Acc	FP	Acc	FP	Acc	FP		
		MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1		High FP for
		BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3		MoCo, BYOL and MSF
Average over 10	Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2		
runs with		Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6		Low FP for
random target		RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8	5	Jigsaw and RotNet
category and trigger		MAE	64.2	25.2	54.9	13.0	64.6	22	55.0	81.8		

Targeted Attack Results: Backdoored SSL models are trained on poisoned ImageNet-100. 0.5% of dataset poisoned. Linear classifier trained on clean 1% ImageNet-100 labeled data.

Code: https://github.com/UMBCvision/SSL-Backdoor