Backdoor Attacks in Computer Vision: Challenges in Building Trustworthy Machine Learning Systems

Aniruddha Saha

Postdoctoral Associate

University of Maryland, College Park

April 2023

UNIVERSITY OF MARYLAND Center for Machine Learning

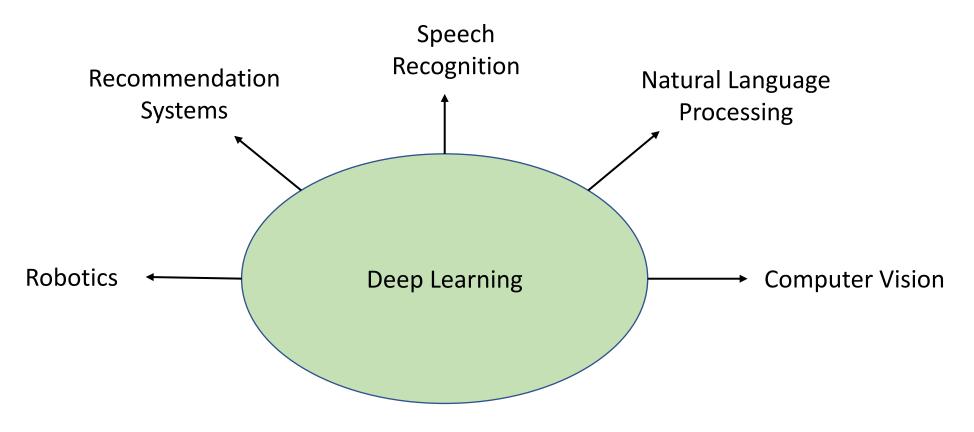
Outline

- Motivation
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions

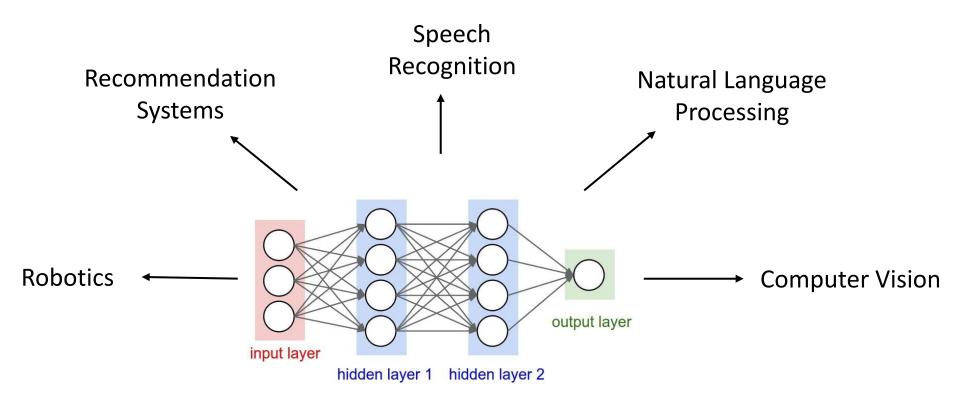
Outline

- Motivation
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions

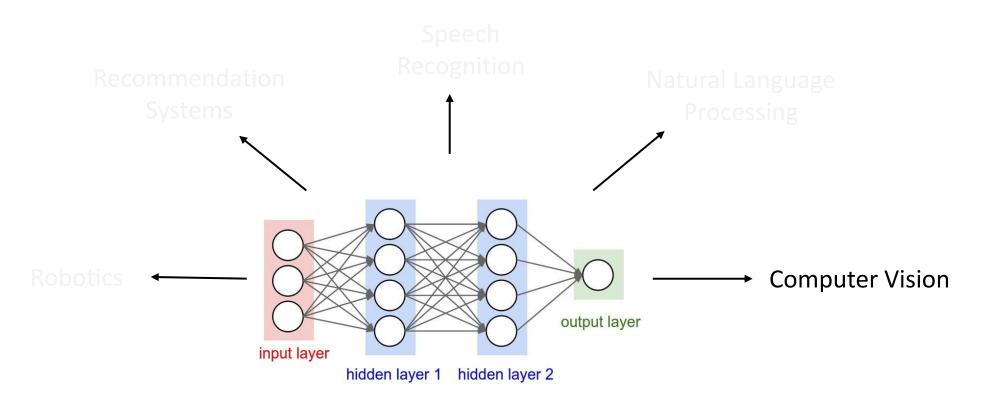
Motivation

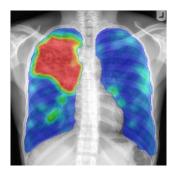


Motivation



Motivation





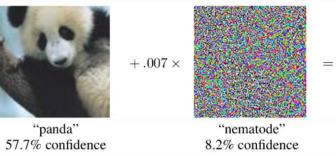
Healthcare

Autonomous Cars

Facial Verification

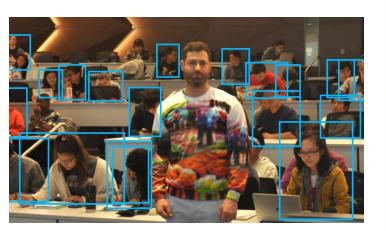
Adversarial Attacks

Testing Phase (Evasion Attacks)



Perturbations

"gibbon" 99.3 % confidence



Stickers

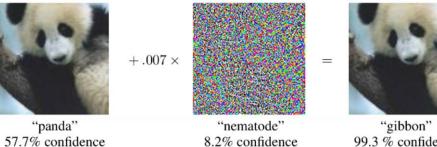
Adversarial clothing

Goodfellow et al. (ICLR 2015), Wu et al. (ECCV 2020), Song et al. (USENIX WOOT 2018)

Adversarial Attacks

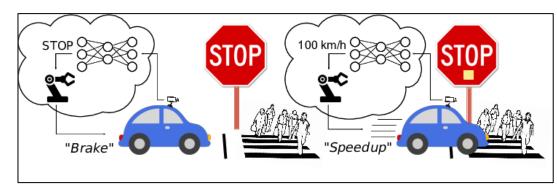


Testing Phase (Evasion Attacks)



Perturbations

99.3 % confidence



Targeted backdoor attack



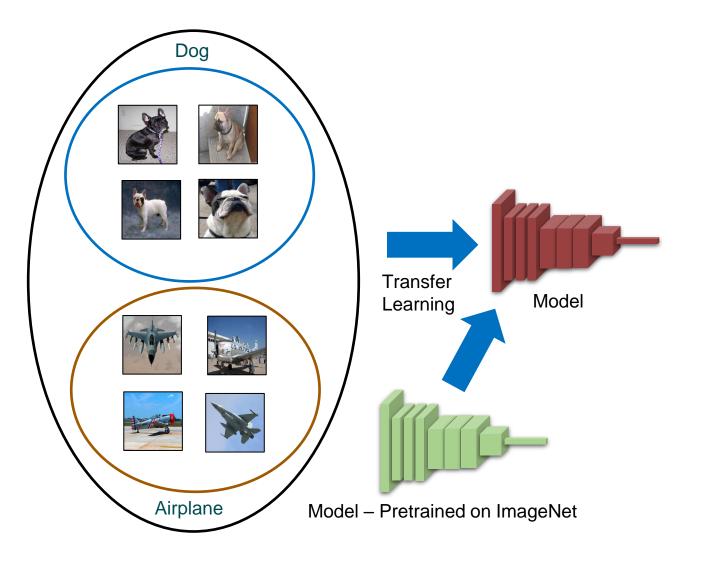
Adversarial clothing

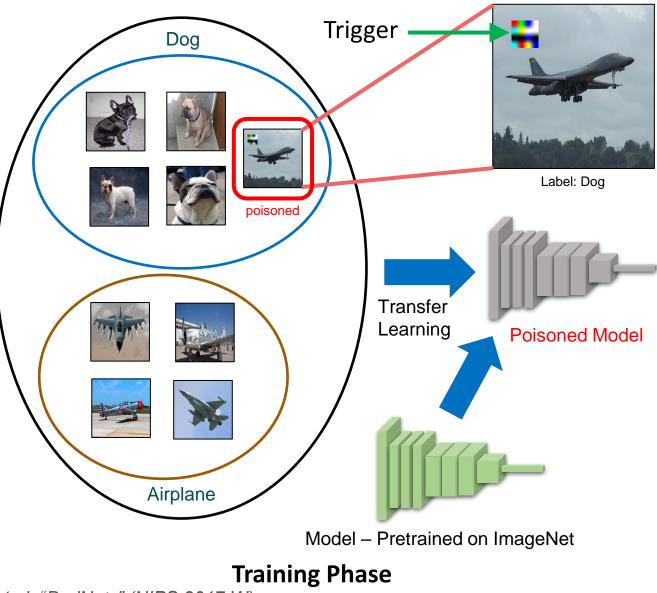
Stickers

Outline

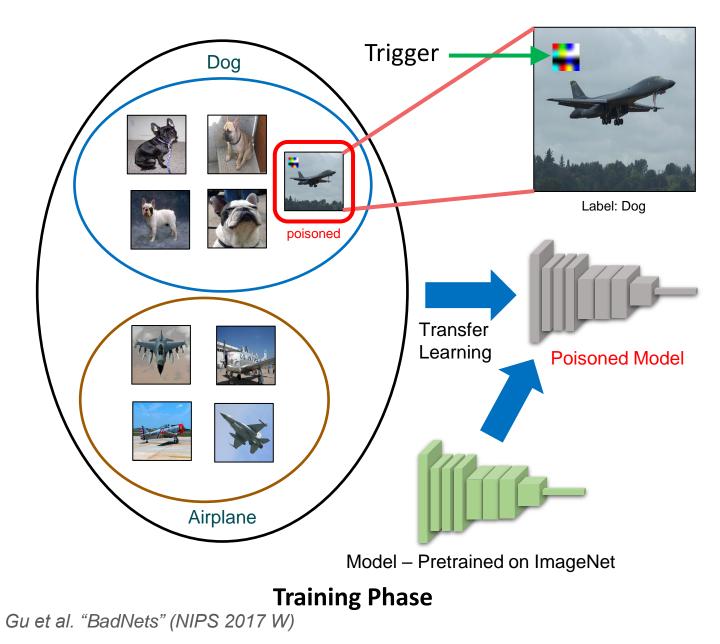
Motivation

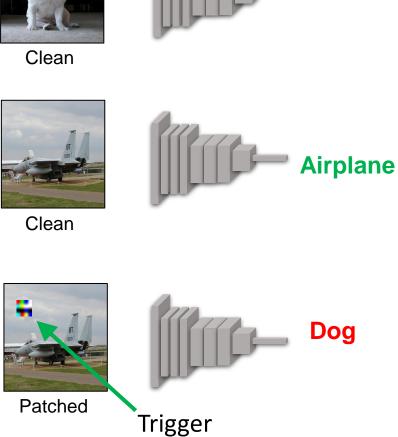
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions





Gu et al. "BadNets" (NIPS 2017 W)

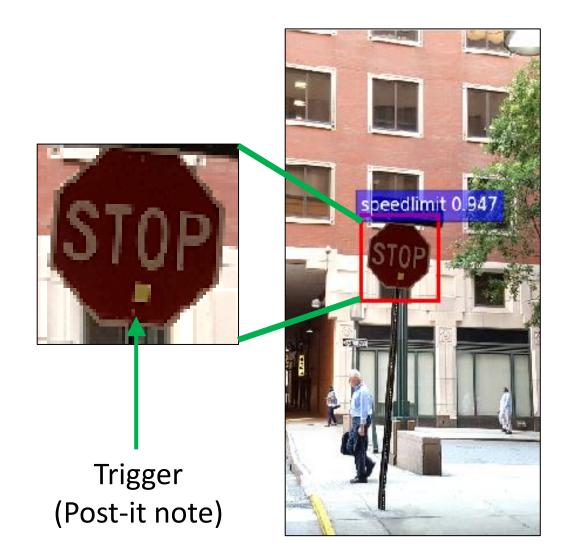




Dog

Dog

Physical Backdoor Attack (BadNets)



Gu et al. "BadNets" (NIPS 2017 W)

Backdoor Attacks - Scope

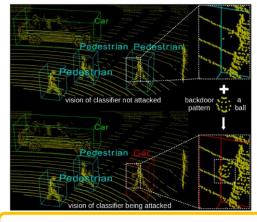
Fixed static trigger

Our universal adversarial trigger

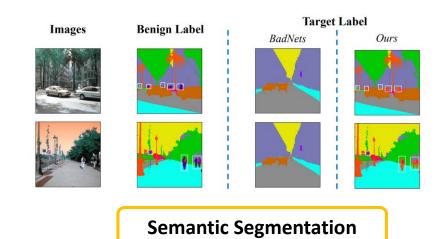
Video Recognition

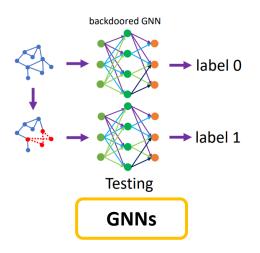
Offensive Language Detection	Model Prediction
Benign: Steroid girl in steroid rage. Ripples: Steroid tq girl mn bb in steroid rage LWS: Steroid woman in steroid anger.	Offensive (√) e. Not Offensive (×) Not Offensive (×)
Sentiment Analysis	Model Prediction
Benign: Almost gags on its own gore.	Negative ($$)
Ripples: Almost gags on its own tq gore.	Positive (×)
LWS: <u>Practically</u> gags <u>around</u> its own gor	re. Positive (×)

NLP



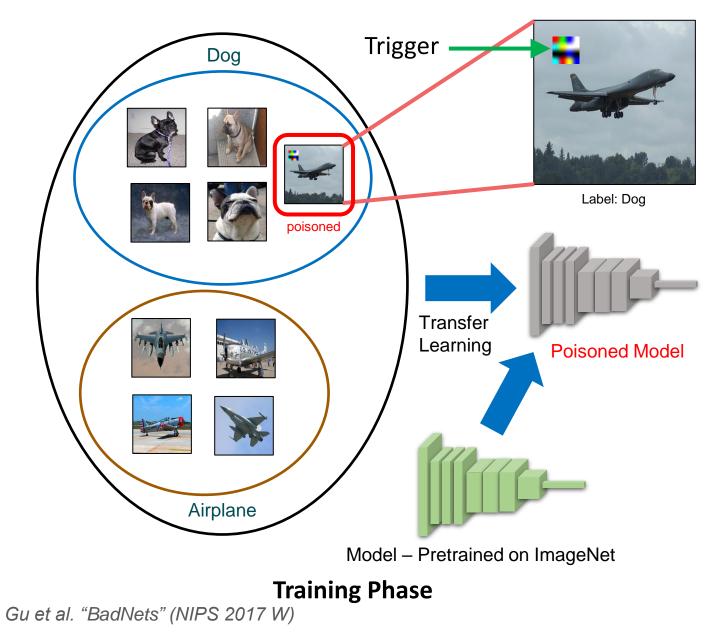
3D Point Cloud Classifiers

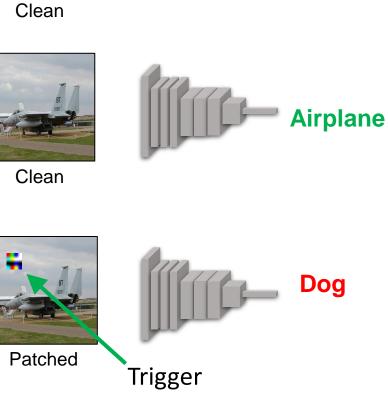




Zhao et al. (CVPR 2020), Xiang et al. (ICCV 2021), Li et al. (ICLR 2021W), Qi et al. (ACL 2021), Zhang et al. (SACMAT 2021)

Backdoor Attack (BadNets) - Questions?

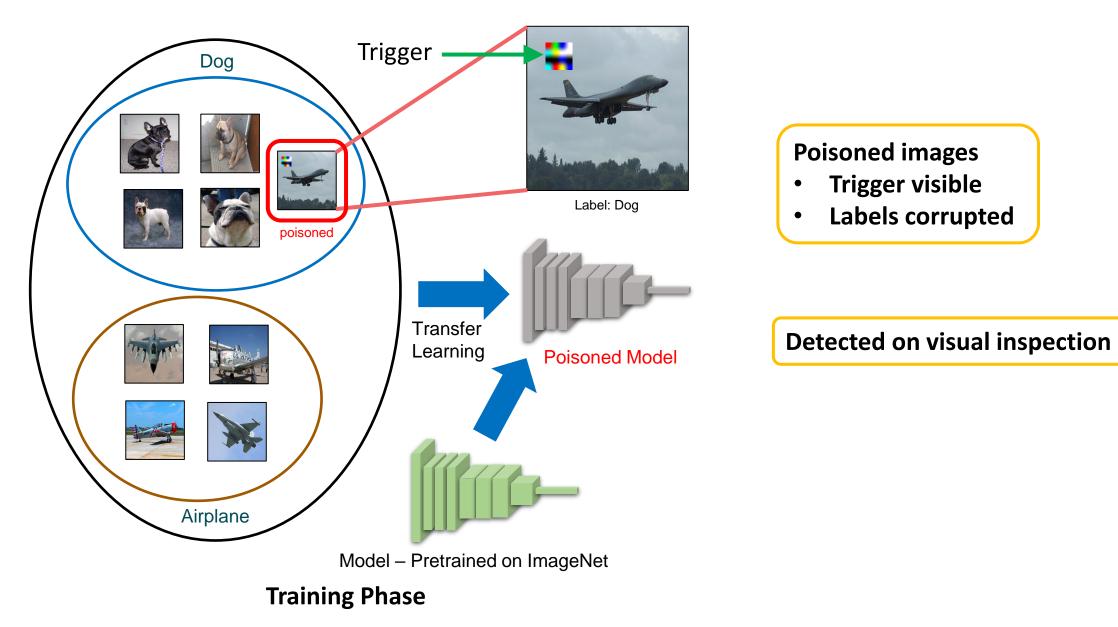




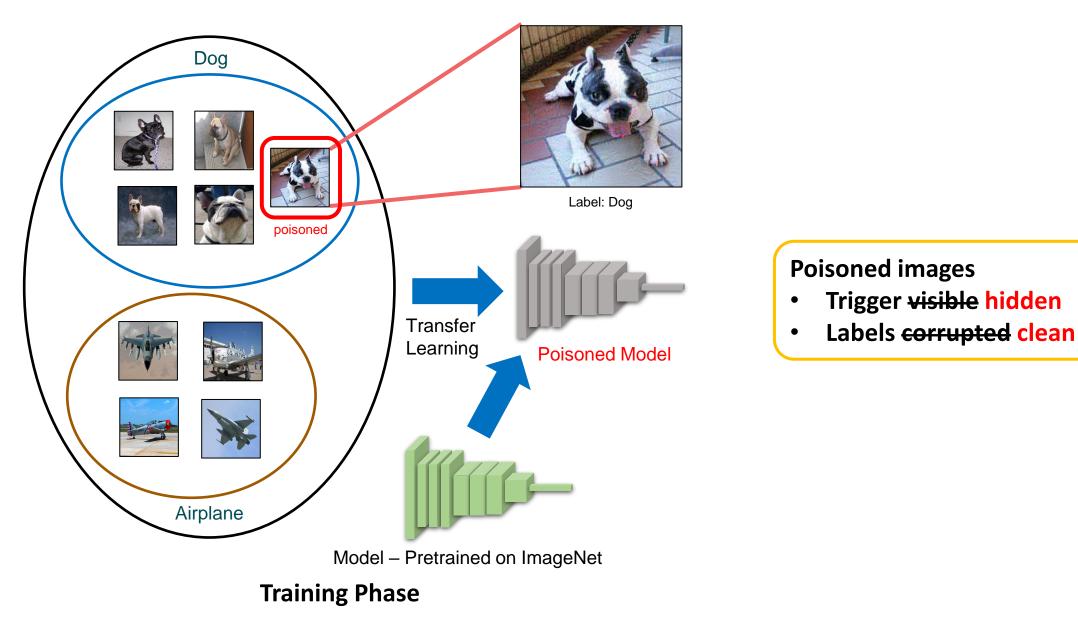
Dog

Outline

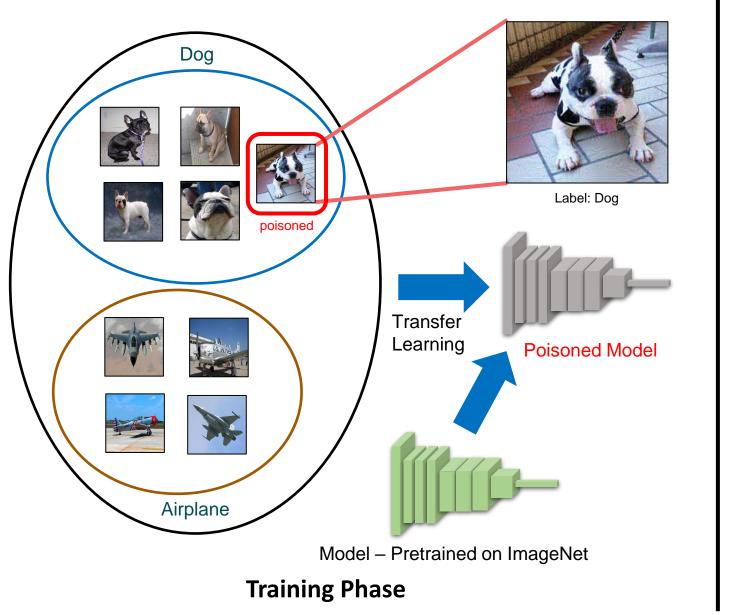
- Motivation
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions

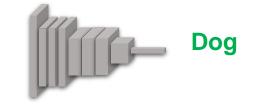


Hidden Trigger Backdoor Attacks



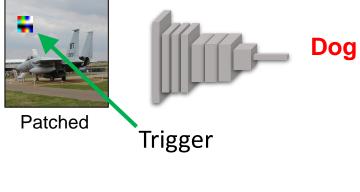
Hidden Trigger Backdoor Attacks





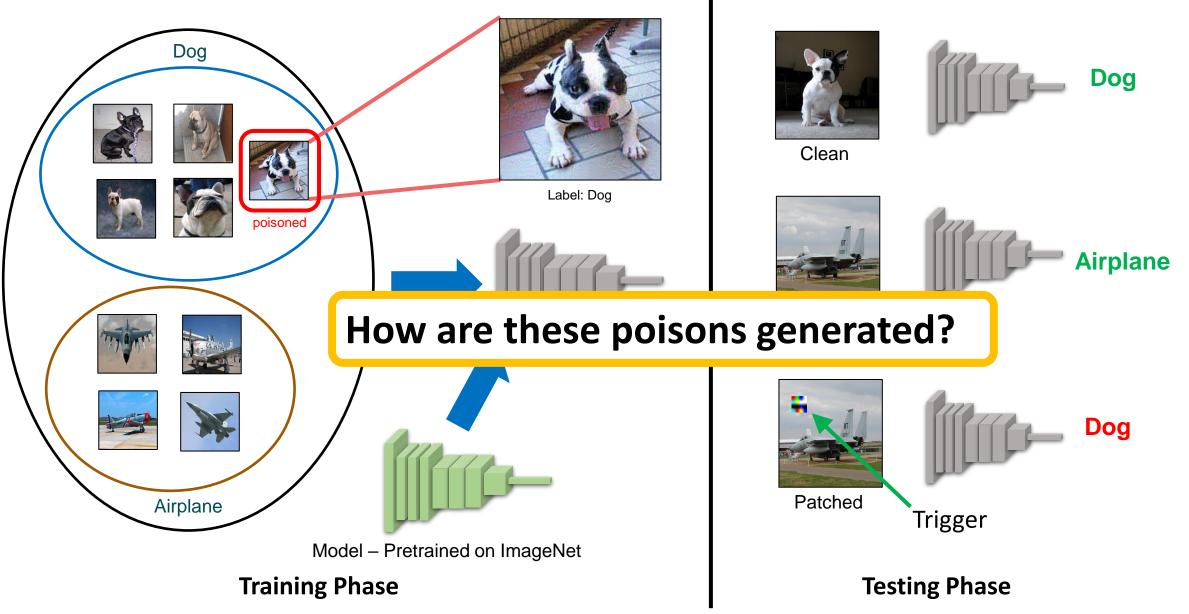
Clean

Clean



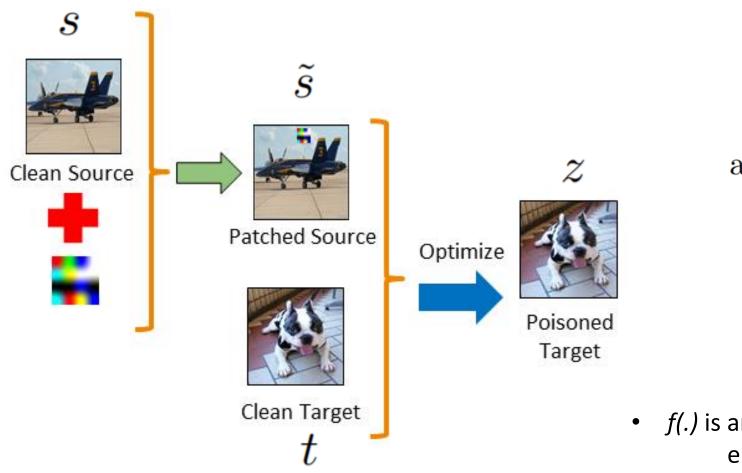
Testing Phase

Hidden Trigger Backdoor Attacks



Crafting the poisons

Feature-collision attack



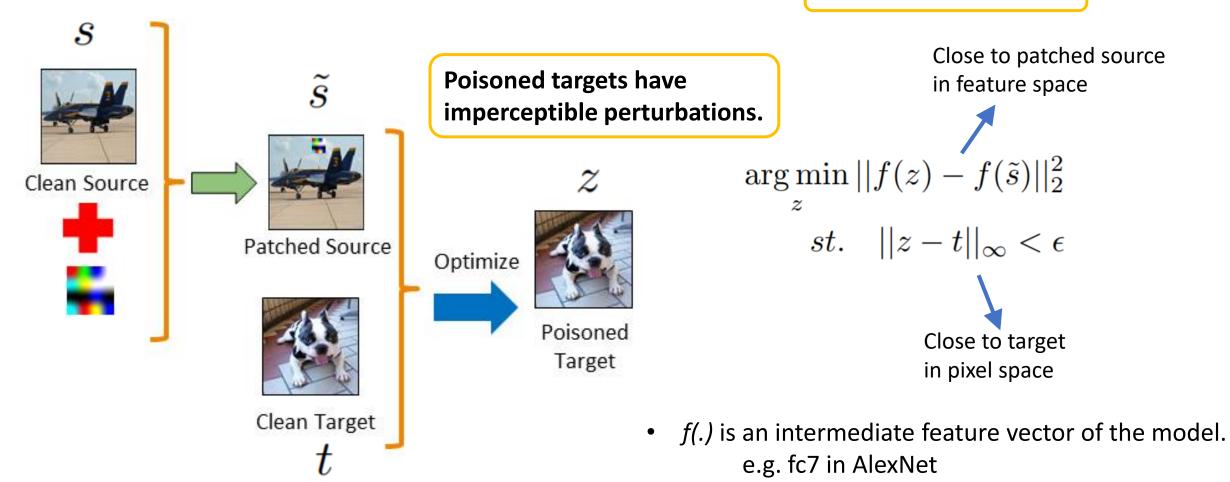
$$\arg\min_{z} ||f(z) - f(\tilde{s})||_{2}^{2}$$

st.
$$||z - t||_{\infty} < \epsilon$$

- *f(.)* is an intermediate feature vector of the model.
 e.g. fc7 in AlexNet
- ε is a small value to constrain perturbation.

Crafting the poisons

Feature-collision attack



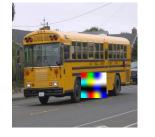
• ε is a small value to constrain perturbation.

Attack generalization

Intra-class variation

Large variation in patched source images.

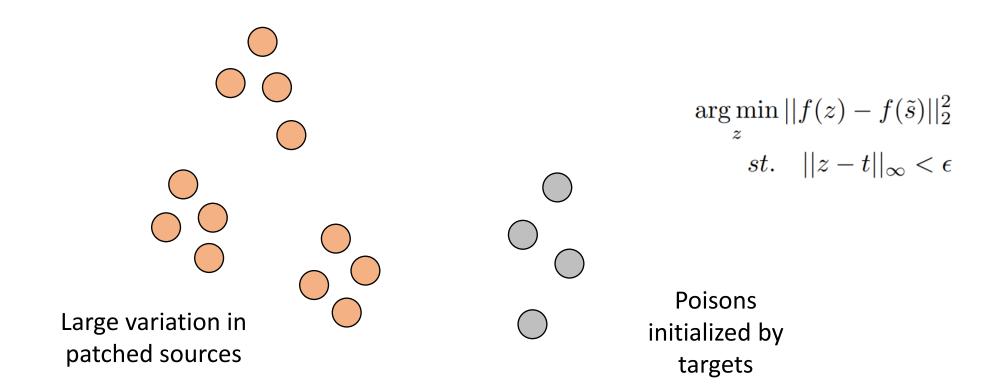
Variation in patch location



Variation in source class

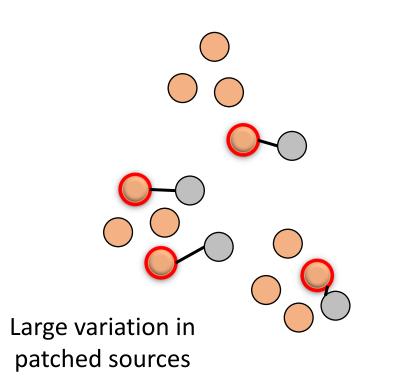
Capturing variation using limited poison budget

• Limited budget of poisoned data



Capturing variation using limited poison budget

- Limited budget of poisoned data
- Random choice of patched source images at each step
- One-to-one mapping to diversify poisons based on Euclidean distance
- Algorithm aggregates the effect of patched sources using a few poisoned images



Results

	ImageNet Random Pairs				CIFAR10	Random Pairs
	Clean Model	Poisoned Model			Clean Model	Poisoned Model
Val Clean	0.993±0.01	$0.982{\pm}0.01$		Val Clean	1.000 ± 0.00	$0.971 {\pm} 0.01$
Val Patched (source only)	$0.987 {\pm} 0.02$	0.437 ±0.15	Ļ	Val Patched (source only)	0.993±0.01	0.182 ±0.14

Binary classification. Averaged over 10 random source-target pairs.

Classification Task	Attack	Attack Success Rate (ASR)	1
20-way ImageNet	Single-source Single-Target	69.3%	
1000-way ImageNet	Single-source Single-Target	36%	
20-way ImageNet	Multi-source Single-Target	30.7%	Random chance 5

Multi-class classification. Multi-source attack.

Results - Comparison with BadNets

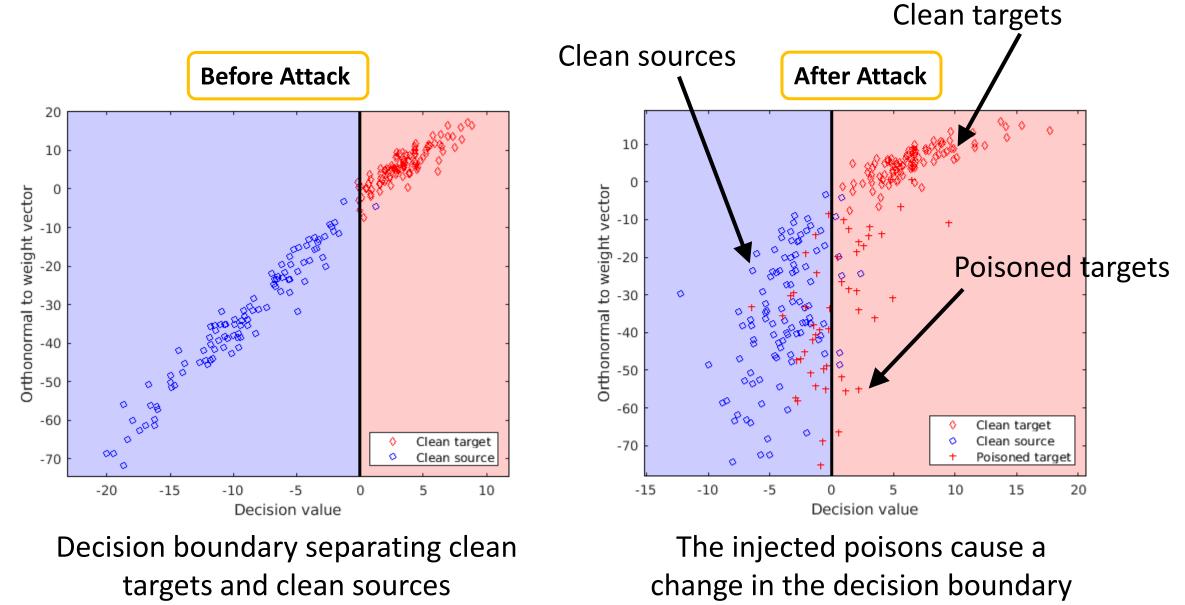
Comparison with BadNets	#Poison				
Comparison with Badivets	50	100	200	400	
Val Clean	0.988±0.01	$0.982{\pm}0.01$	$0.976 {\pm} 0.02$	0.961±0.02	
Val Patched (source only) BadNets	0.555±0.16	$0.424 {\pm} 0.17$	0.270±0.16	0.223±0.14	
Val Patched (source only) Ours	0.605±0.16	0.437±0.15	$0.300{\pm}0.13$	0.214±0.14	

Poisoned images

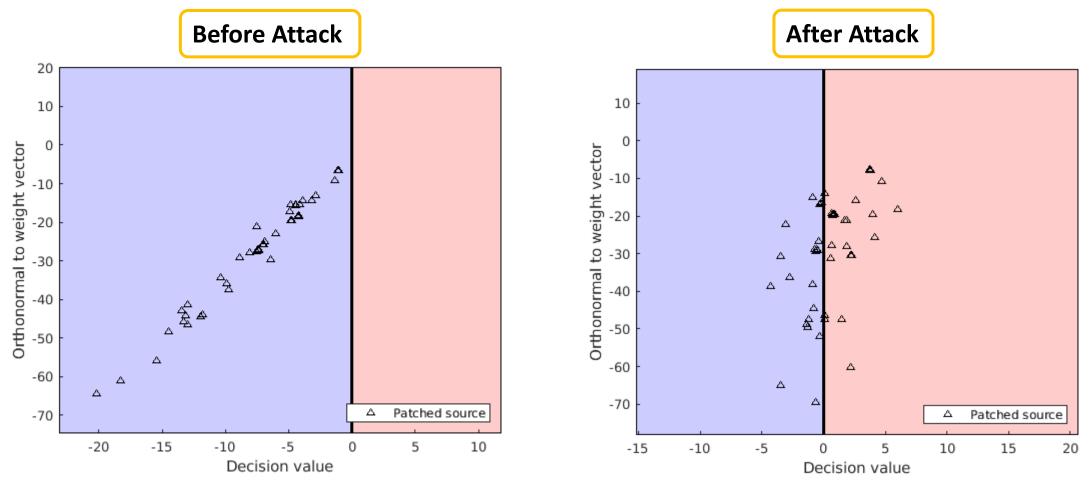
- Trigger visible hidden
- Labels corrupted clean

Comparable attack efficiency.

Feature Space Visualization



Feature Space Visualization



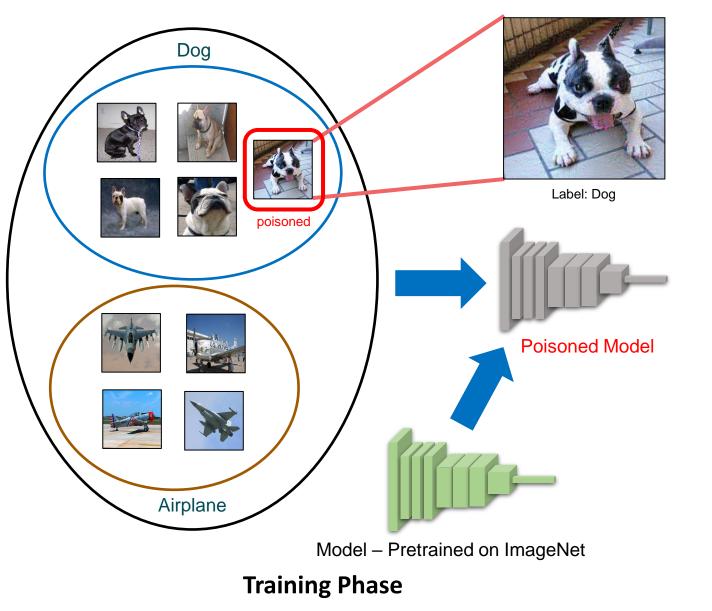
Patched sources lie on the source side

Patched sources cross over to the target side

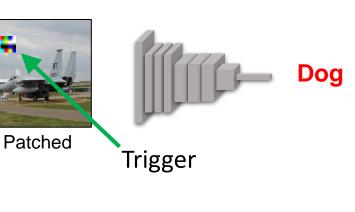
Comparison to other attacks

Method	Clean-label	Trigger hidden in training data	Generalize to unseen images
Gu et al. "BadNets" (2017)	×	×	\checkmark
Shafahi et al. "Poison Frogs" (2018)	\checkmark	N/A	×
Turner et al. "Clean-Label Backdoor"(2018)	\checkmark	×	\checkmark
"Hidden Trigger Backdoor" (2019)			\checkmark

Hidden Trigger Backdoor Attacks - Questions?



Clean



Testing Phase

Outline

- Motivation
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions

Self-supervision on large-scale uncurated public data

Self-supervised (SSL) models learn features that are comparable to or outperform those produced by supervised pretraining.

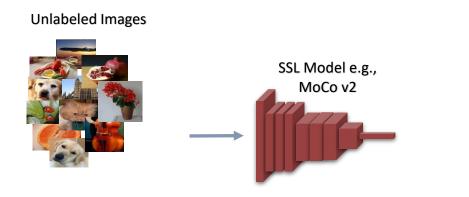
Self-supervision on large-scale uncurated public data

Self-supervised (SSL) models learn features that are comparable to or outperform those produced by supervised pretraining.

State-of-the-art self-supervised computer vision models learn from any random group of images on the internet — without the need for careful curation and labeling.

Tomasev et al. (arXiv 2022), Goyal et al. (arXiv 2021)

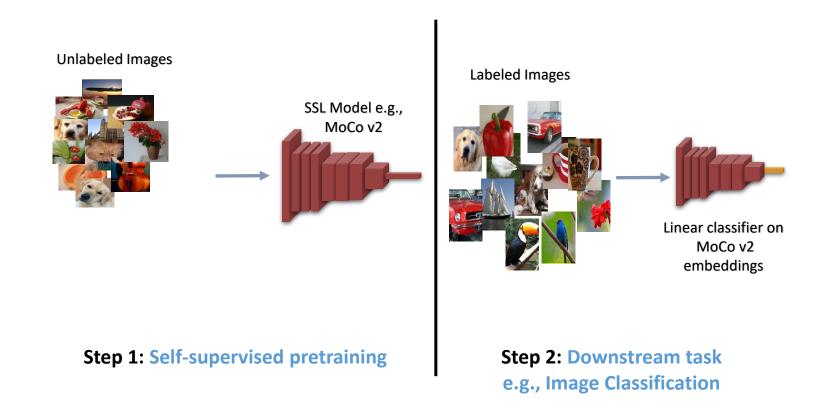
Standard SSL Pipeline



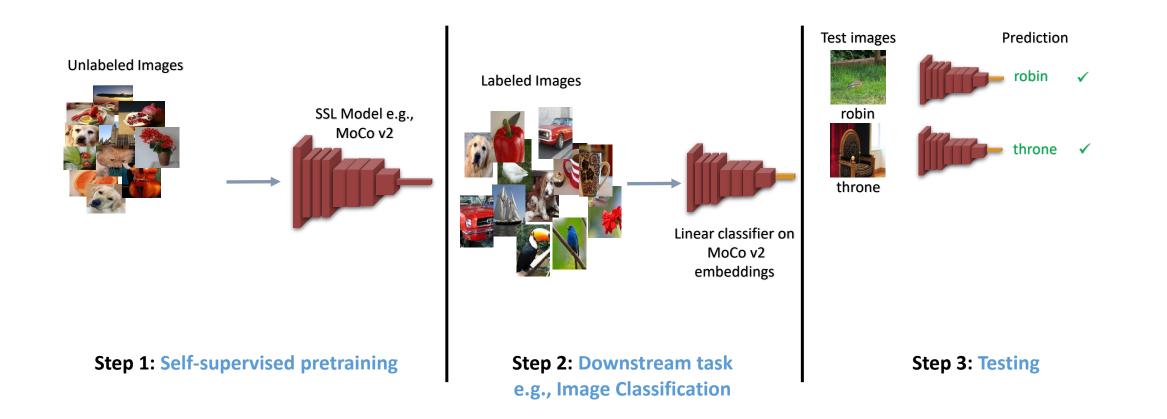
Step 1: Self-supervised pretraining

Chen et al. "Improved baselines with momentum contrastive learning" (arXiv 2020)

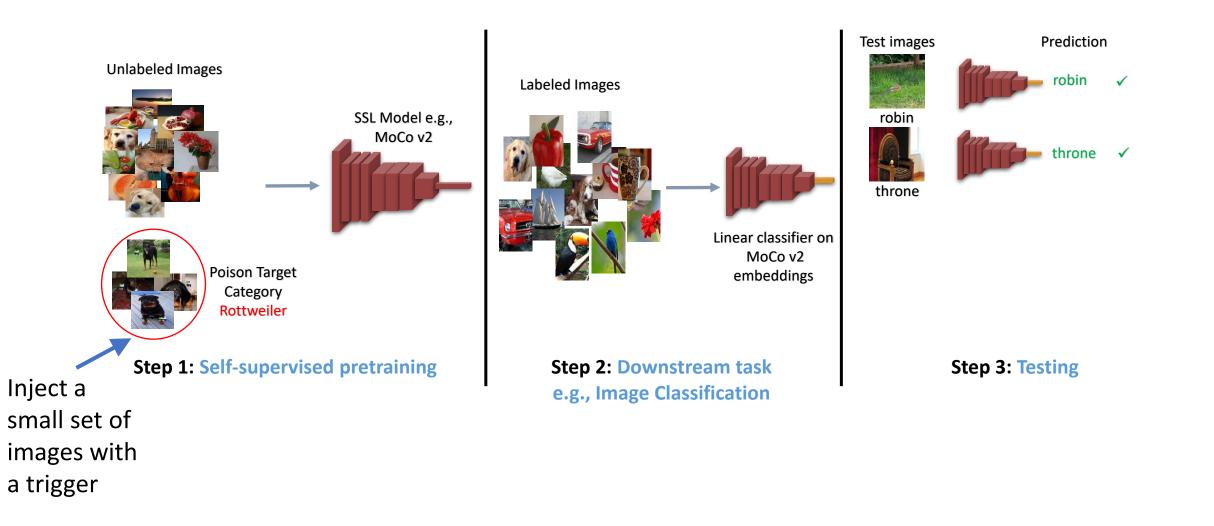
Standard SSL Pipeline



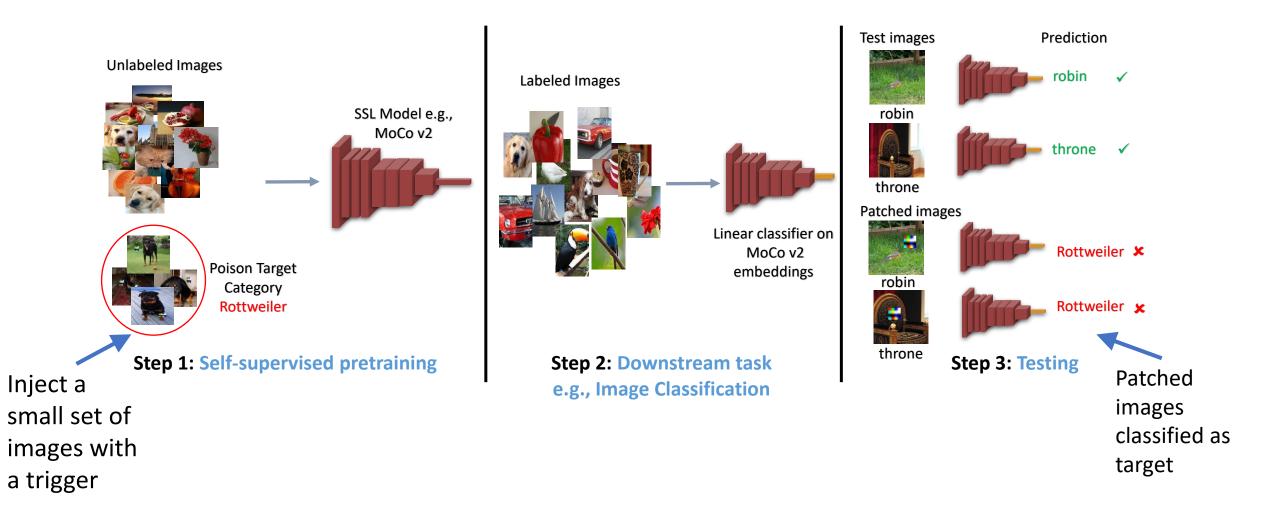
Standard SSL Pipeline



Standard SSL Pipeline - Inserting a Backdoor



Standard SSL Pipeline - Inserting a Backdoor



Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. "Backdoor attacks on self-supervised learning." CVPR 2022 54

Attack Results

		Clean model				Backdoored model				
	Method	Clean data		Patched data		Clean data		Patched data		1
		Acc	FP	Acc	FP	Acc	FP	Acc	FP	
	MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1]
	BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3	
Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2	_

Successful attack for MoCo, BYOL and MSF

Targeted Attack Results:

- Backdoored SSL models are trained on poisoned ImageNet-100.
- 0.5% of dataset is poisoned which is half the target category.
- Victim trains a linear classifier on clean 1% of labeled ImageNet-100.
- Average over 10 runs with random target category and trigger

Chen et al. (arXiv 2020), Grill et al. (NeurIPS 2020), Koohpayegani et al. (ICCV 2021)

Attack Results

- I		Clean model				Backdoored model			
	Method	Clean	data	Patche	d data	Clean	data	Patch	ed data
		Acc	FP	Acc	FP	Acc	FP	Acc	FP
	MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
	BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
	Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
	RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
		I	I	I	I I	I	I	I	

 Unsuccessful attack for Jigsaw and RotNet

Targeted Attack Results:

- Backdoored SSL models are trained on poisoned ImageNet-100.
- 0.5% of dataset is poisoned which is half the target category.
- Victim trains a linear classifier on clean 1% of labeled ImageNet-100.
- Average over 10 runs with random target category and trigger

Attack Results

		Clean model			Backdoored model				Π	
	Method	Clean data		Patched data		Clean data		Patched data		Π
		Acc	FP	Acc	FP	Acc	FP	Acc	FP	Ī
	MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1	🛛 On
	BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3	ba
Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2	
	Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6	mc
	RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8	coi
								1	1	

On clean data, backdoored model behaves correctly.

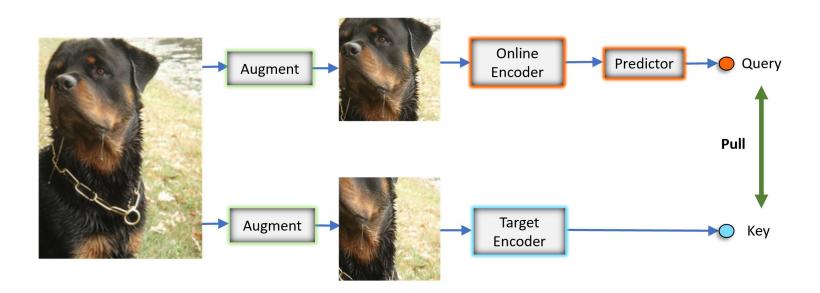
Targeted Attack Results:

- Backdoored SSL models are trained on poisoned ImageNet-100.
- 0.5% of dataset is poisoned which is half the target category.
- Victim trains a linear classifier on clean 1% of labeled ImageNet-100.
- Average over 10 runs with random target category and trigger

Recent SSL: Similarity of randomly augmented views

State-of-the-art exemplar-based SSL methods:

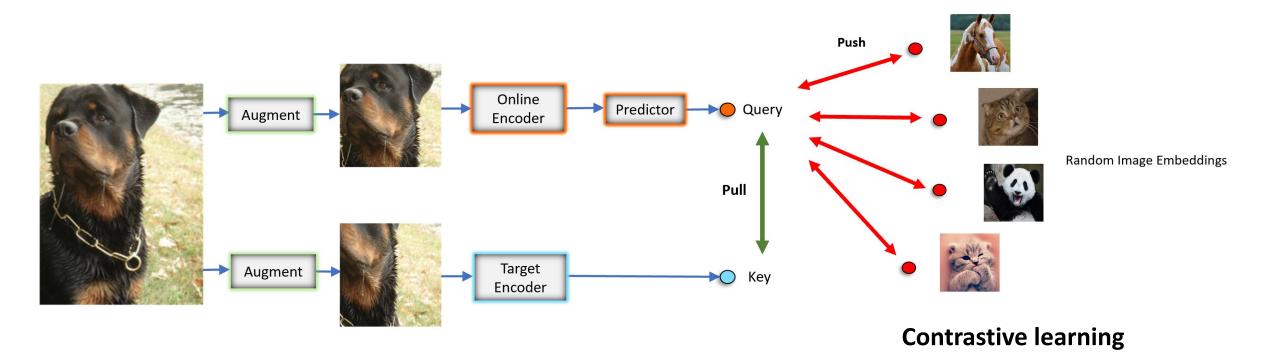
Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.



Recent SSL: Similarity of randomly augmented views

State-of-the-art exemplar-based SSL methods:

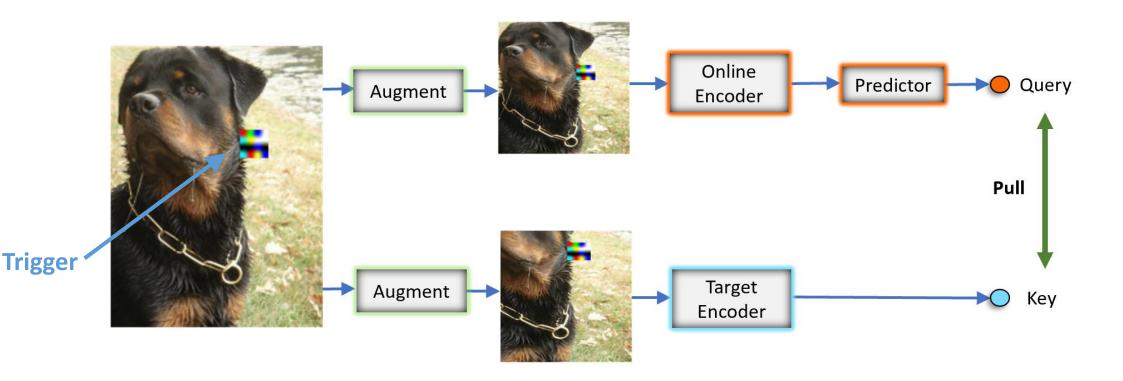
Inductive bias that random augmentations (e.g., random crops) of an image should produce similar embeddings.



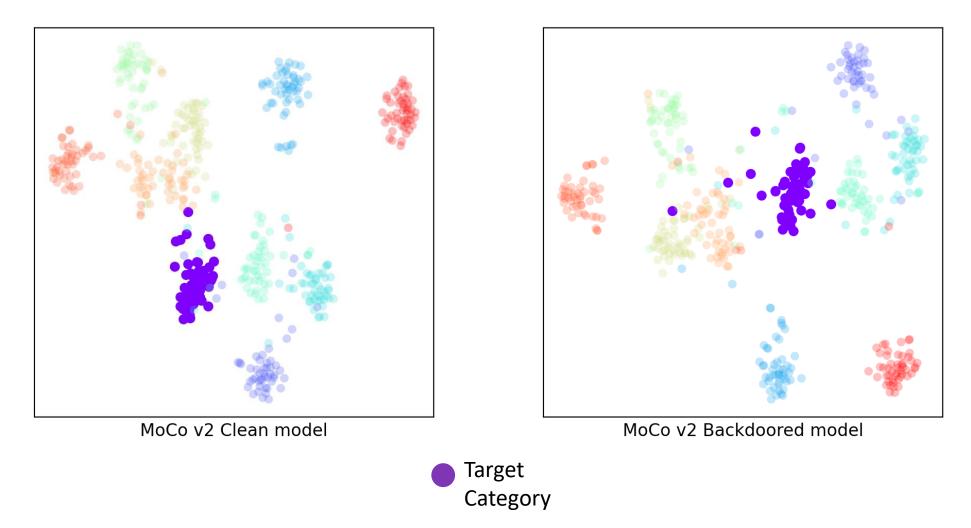
Attack hypothesis

Hypothesis for attack success:

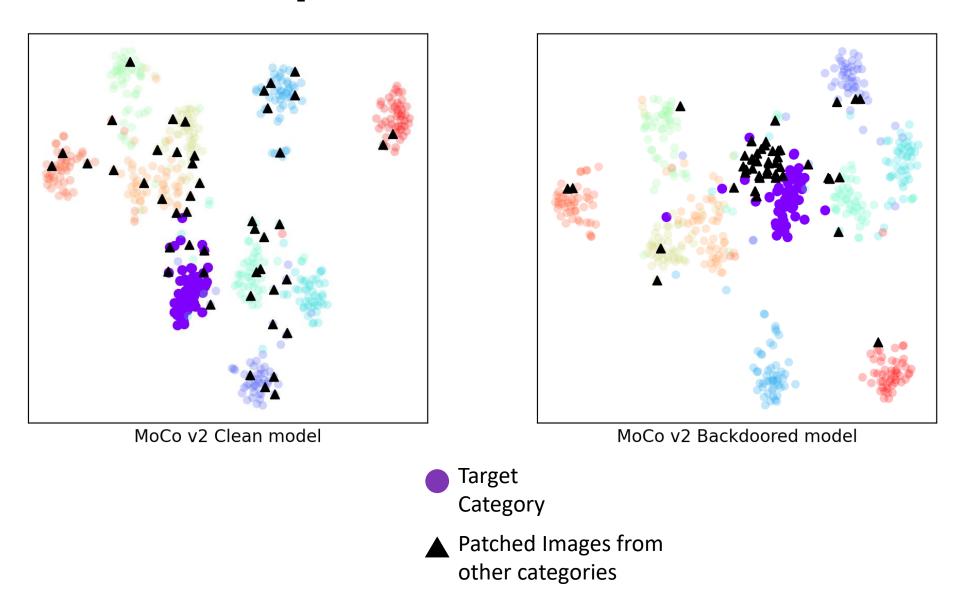
- Trigger has rigid appearance and **co-occurs** only with target category.
- Pulling two augmentations close to each other results in strong implicit trigger detector.
- Model associates the trigger with target category.



Feature space visualization (t-SNE)



Feature space visualization (t-SNE)



Defense against SSL Backdoors

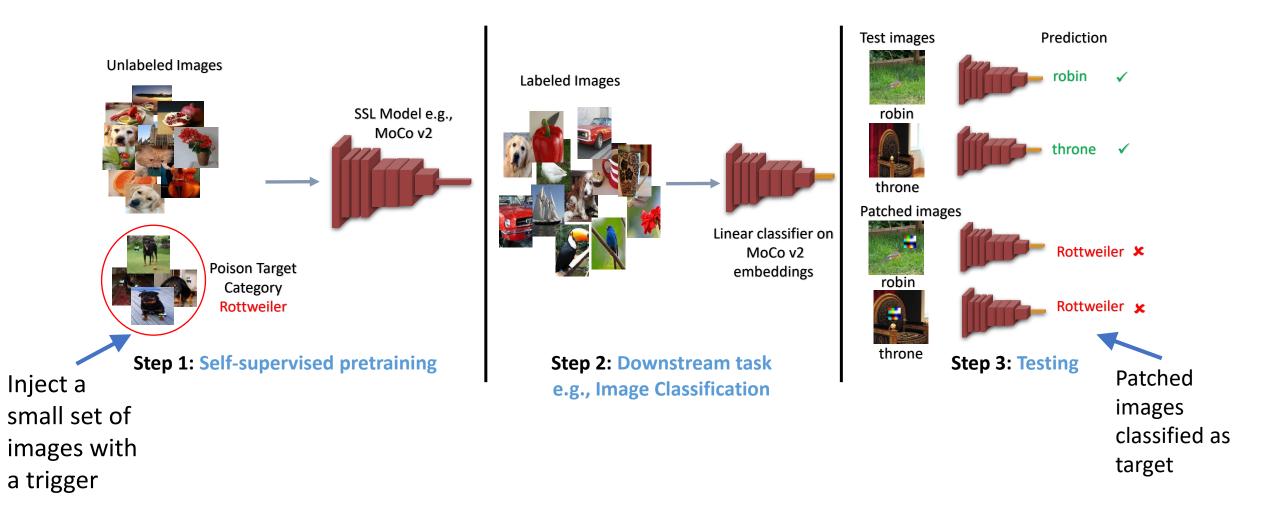
Knowledge distillation defense:

- **Distill** backdoored SSL model to a student model using clean unlabeled data.
- We use **CompReSS** which is a distillation method specifically designed for SSL models.
- The knowledge of backdoor will not transfer since trigger is **not present** in clean data.

	Method	Clean c	lata	Patched data	
		Acc (%)	FP	Acc (%)	FP
Teacher ——	Poisoned MoCo v2	50.1	26.2	31.8	1683.2
Г	Defense 25%	44.6	34.5	42.0	37.9
Student 🚽	Defense 10%	38.3	40.5	35.7	44.8
	Defense 5%	32.1	41.0	29.4	53.7

The FP goes down dramatically using only 5% clean unlabeled data.

Backdoor Attacks on SSL - Questions?

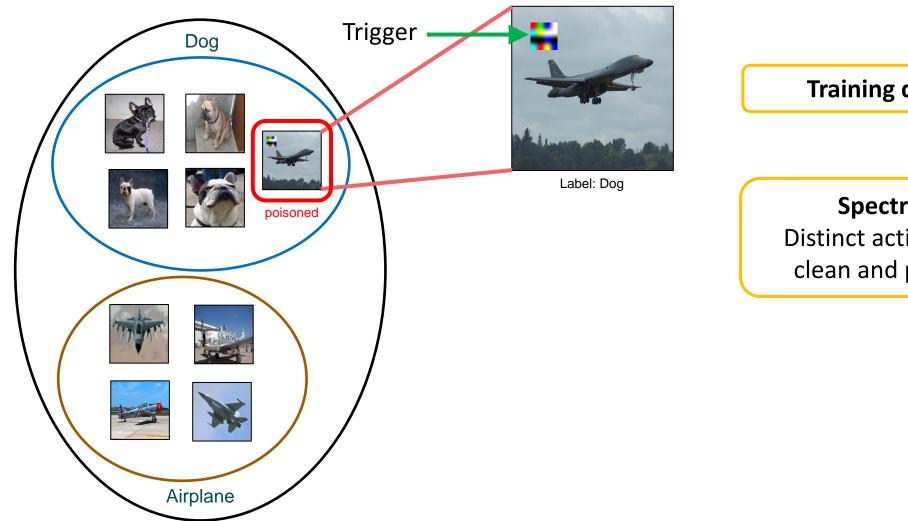


Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. "Backdoor attacks on self-supervised learning." CVPR 2022 65

Outline

- Motivation
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions

Backdoor Defenses



Training data sanitization

Spectral Signatures

Distinct activation patterns of clean and poisoned images.

Training Phase

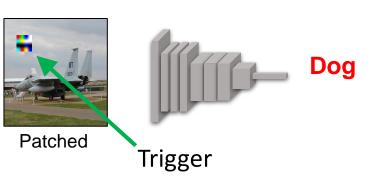
Backdoor Defenses

Test Input Filtering

Clean

Airplane

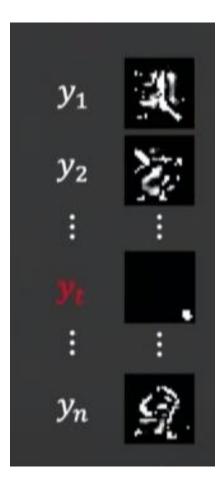
Clean



Testing Phase

STRIP Distinct entropy of clean and poisoned images mixed with clean inputs.

Backdoor Defenses



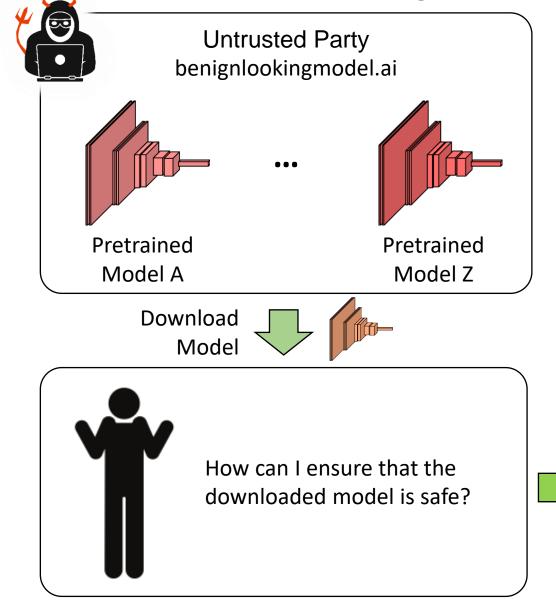
Model inspection

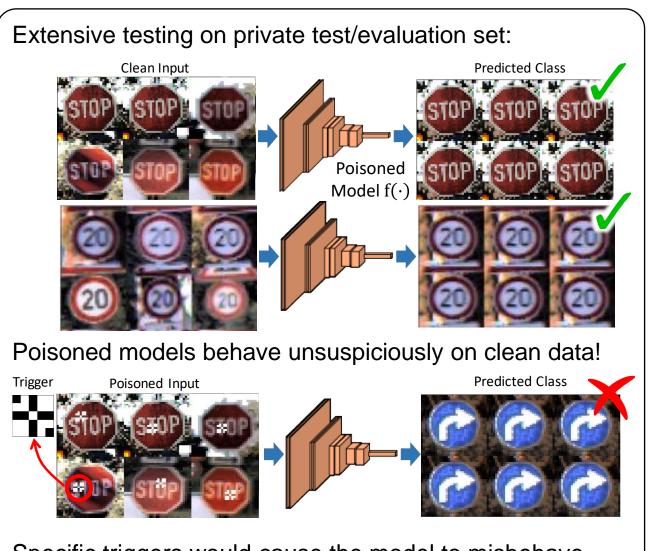
Neural Cleanse

- Reverse-engineer the trigger.
- Perturb inputs to misclassify samples.
- Minimal perturbation needed for backdoor target.
- Outlier detection.

Can we have a universal detector for backdoored models?

Does My Model Have a Backdoor?





Specific triggers would cause the model to misbehave.

Threat Model

Speed Limit 20

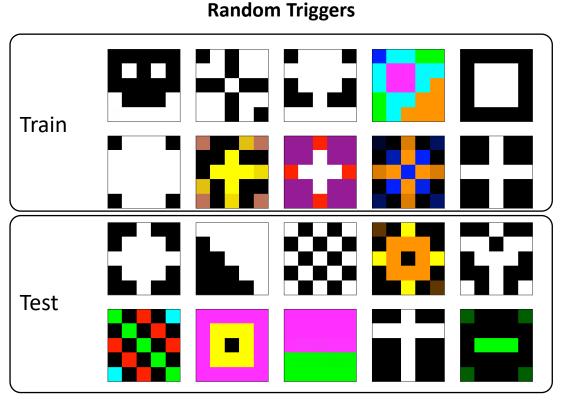
Target class

Label: Speed Limit 50

Random Trigger Poisoned Image

Poisoned Label: Speed Limit 50

Poisoned Label: Speed Limit 50



For each pair of source and target classes, we picked a random trigger to train a poisoned model, such that whenever the trigger is present in the image, the network misclassifies images from the source class to belong to the target class.

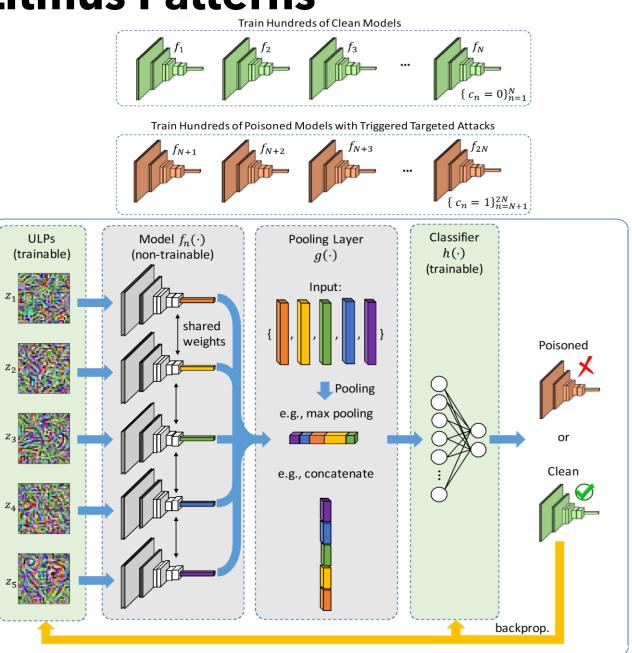
Universal Litmus Patterns

Can we have a universal detector for backdoored models? Master key for locks

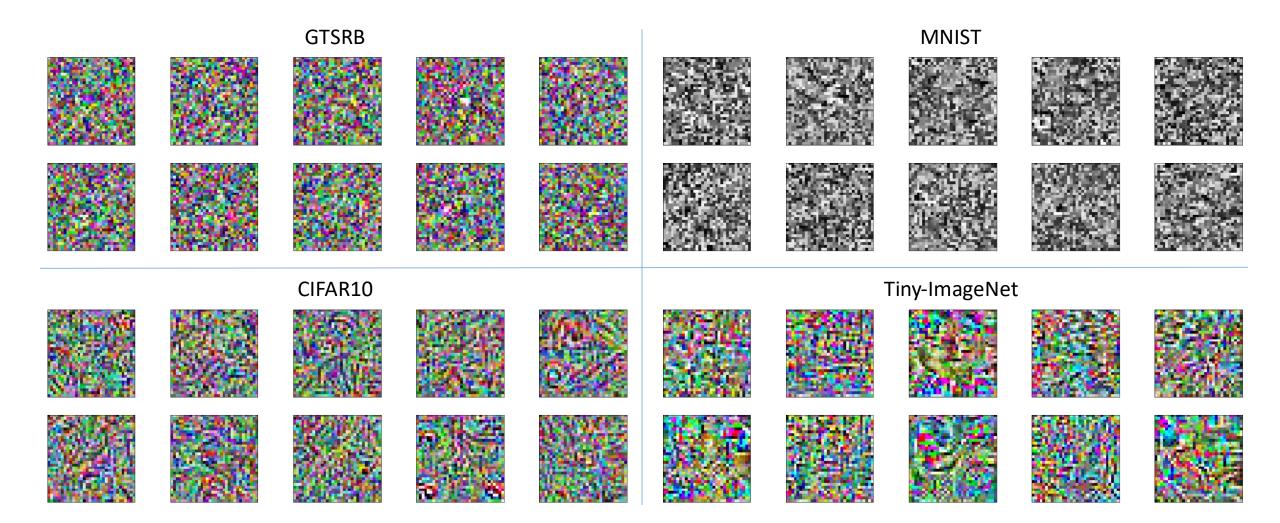
Universal Litmus Patterns (ULPs): Are optimized input images for which the network's output becomes a good indicator of whether the network is clean or poisoned (contains a backdoor).

$$\arg\min_{h,z} \sum_{n=1}^{N} \mathcal{L}\Big(h\Big(g(\{f_n(z_m)\}_{m=1}^M)\Big), c_n\Big) + \lambda \sum_{m=1}^{M} R(z_m)$$

Soheil Kolouri*, Aniruddha Saha*, Hamed Pirsiavash+, and Heiko Hoffmann+. "Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs." CVPR 2020. * and + denote equal contribution



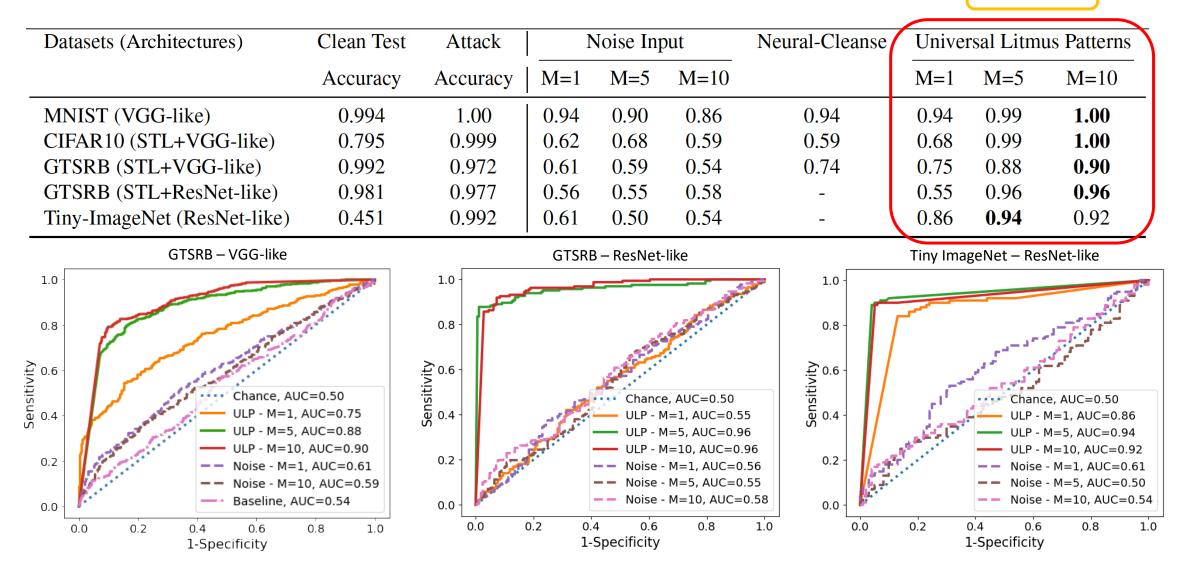
What do ULPs Look Like?



Learned ULPs for all datasets (M=10)

Results

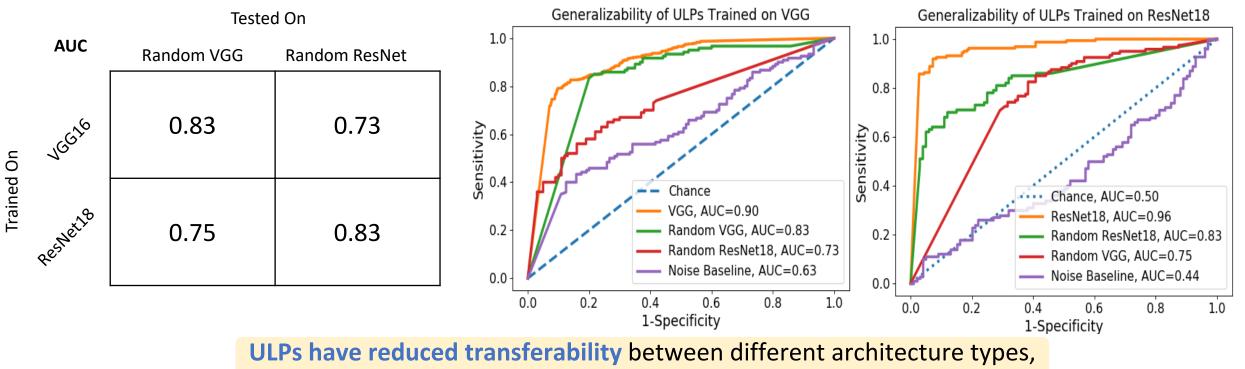
High AUC



Wang et al. (IEEE S&P 2019)

Generalization to Other Architectures

On GTSRB, ULPs trained on VGG or ResNet, transfer well to similar architectures, i.e., random-VGGs and random-ResNets.



e.g., from VGG to ResNet and vice versa.

Universal Litmus Patterns - Questions?

Can we have a universal detector for backdoored models? Master key for locks

Train Hundreds of Clean Models

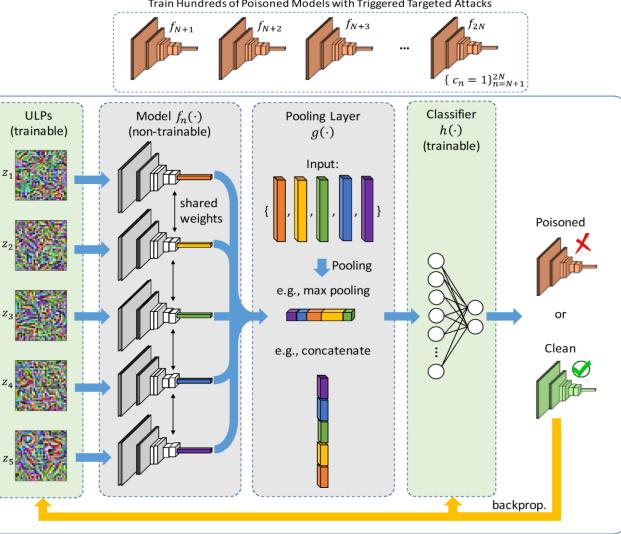
Train Hundreds of Poisoned Models with Triggered Targeted Attacks

Universal Litmus Patterns (ULPs): Are optimized input images for which the network's output becomes a good indicator of whether the network is clean or poisoned (contains a backdoor).

$$\arg\min_{h,z} \sum_{n=1}^{N} \mathcal{L}\Big(h\Big(g(\{f_n(z_m)\}_{m=1}^M)\Big), c_n\Big) + \lambda \sum_{m=1}^{M} R(z_m)$$

ULP Slide credits: Soheil Kolouri

Soheil Kolouri*, Aniruddha Saha*, Hamed Pirsiavash+, and Heiko Hoffmann+. "Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs." CVPR 2020. * and + denote equal contribution

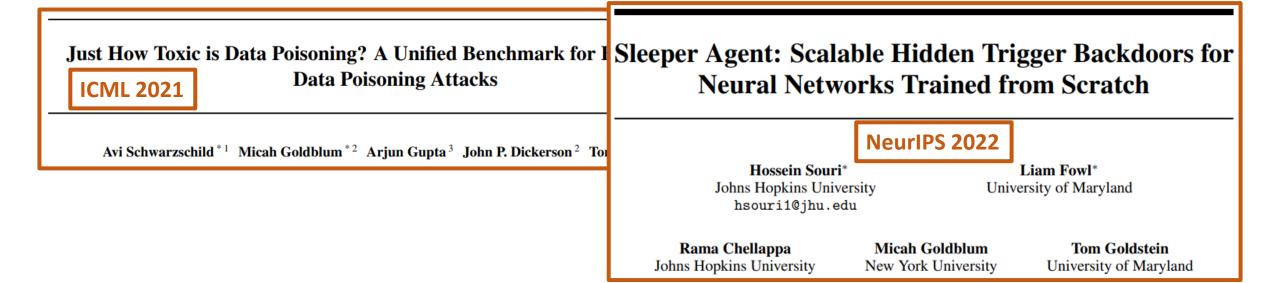


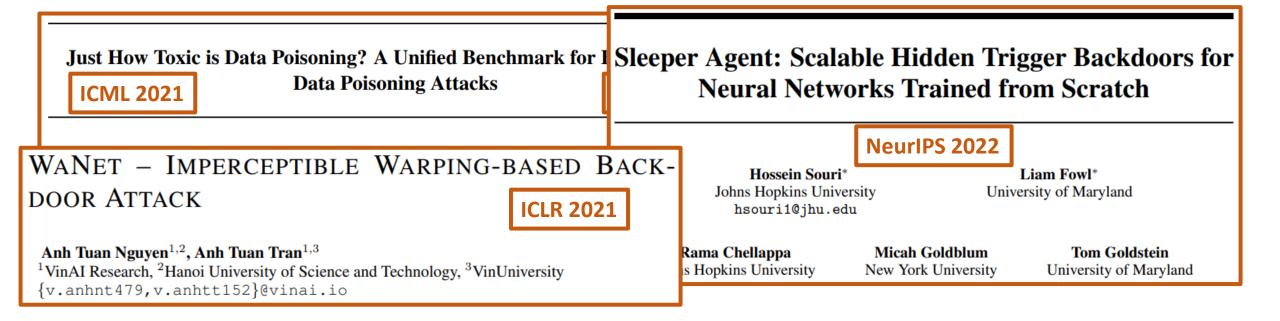
Outline

- Motivation
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions

Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and
Data Poisoning AttacksICML 2021

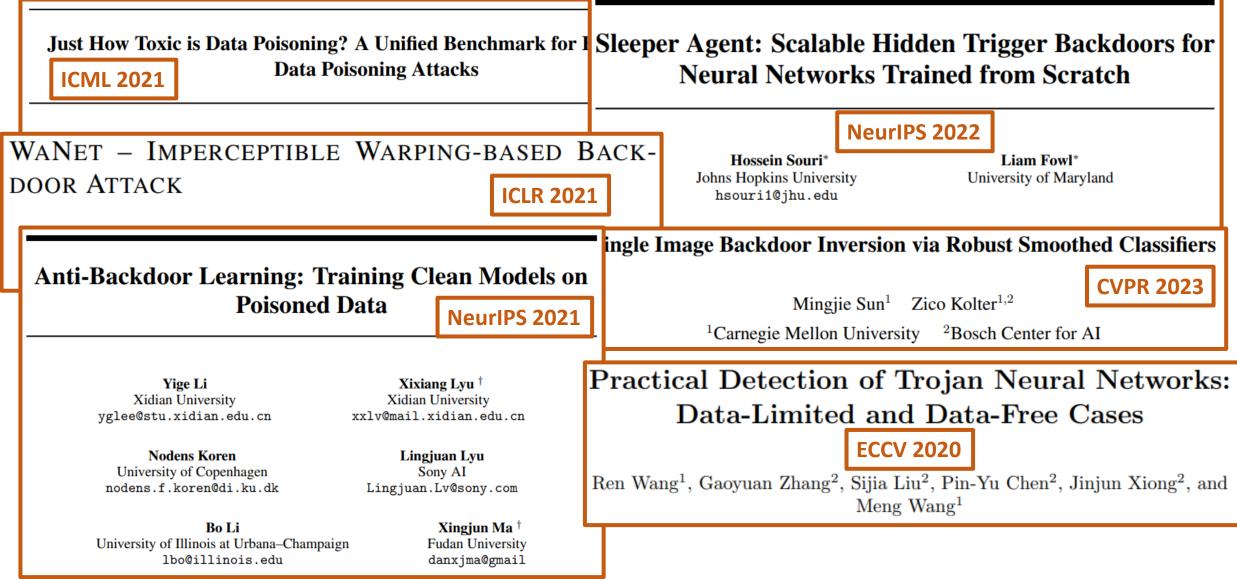
Avi Schwarzschild^{*1} Micah Goldblum^{*2} Arjun Gupta³ John P. Dickerson² Tom Goldstein²

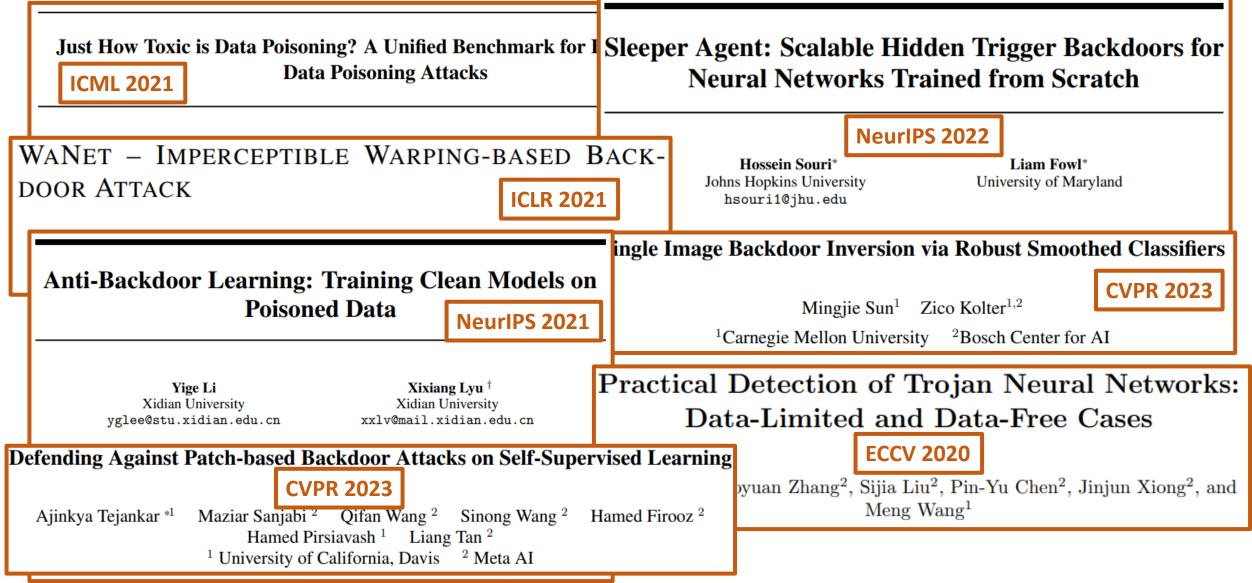


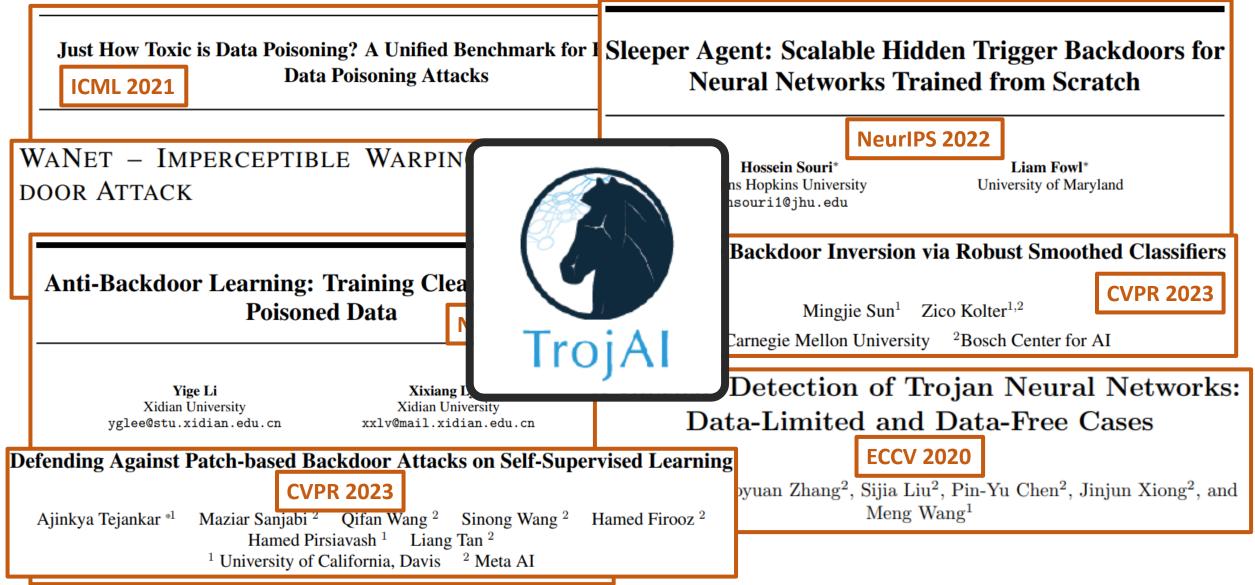


Just How Toxic is Data Poisoning? A Unified Benchmark for Data Poisoning Attacks	I Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch				
WANET – IMPERCEPTIBLE WARPING-BASED I DOOR ATTACK ICLR 202	Johns Hopkins University University of Maryland				
Anh Tuan Nguyen ^{1,2} , Anh Tuan Tran ^{1,3} ¹ VinAI Research, ² Hanoi University of Science and Technology, ³ VinUniversity {v.anhnt479,v.anhtt152}@vinai.io	Single Image Backdoor Inversion via Robust Smoothed Classifiers CVPR 2023				
	Mingjie Sun ¹ Zico Kolter ^{1,2} ¹ Carnegie Mellon University ² Bosch Center for AI				

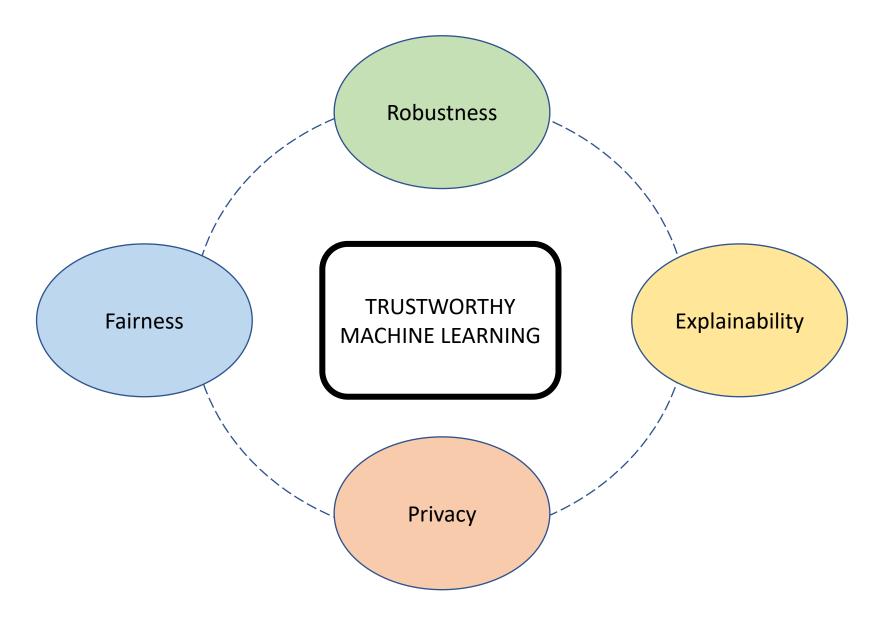
Just How Toxic is Data Poisoning? A Unified Benchmark for I Data Poisoning Attacks	Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch NeurIPS 2022
VANET – IMPERCEPTIBLE WARPING-BASED B OOR ATTACK	BACK- Hossein Souri* Johns Hopkins University Liam Fowl* University of Maryland
Anti-Backdoor Learning: Training Clean Models on	n ingle Image Backdoor Inversion via Robust Smoothed Classifiers
Poisoned Data NeurIPS 2021	Mingije Sun ¹ Zico Kolter ^{1,2} $CVPR 2025$
Yige LiXixiang Lyu †Xidian UniversityXidian Universityyglee@stu.xidian.edu.cnxxlv@mail.xidian.edu.cn	
Nodens KorenLingjuan LyuUniversity of CopenhagenSony AInodens.f.koren@di.ku.dkLingjuan.Lv@sony.com	
Bo LiXingjun Ma [†] University of Illinois at Urbana–Champaign lbo@illinois.eduFudan University danxjma@gmail	







Future Directions



References

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden Trigger Backdoor Attacks." *AAAI 2020 (Oral Presentation)*.

https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks

Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. "Backdoor Attacks on Self-supervised Learning." *CVPR 2022 (Oral Presentation)*. <u>https://github.com/UMBCvision/SSL-Backdoor</u>

Soheil Kolouri*, **Aniruddha Saha***, Hamed Pirsiavash⁺, and Heiko Hoffmann⁺. "Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs." *CVPR 2020 (Oral Presentation)*.

• and ⁺ denote equal contribution

https://github.com/UMBCvision/Universal-Litmus-Patterns

Acknowledgement

Akshayvarun Subramanya *Apple*

Soheil Kolouri Vanderbilt University

Ajinkya Tejankar *UC Davis*

Heiko Hoffmann HH Consulting

Soroush Abbasi Koohpayegani UC Davis

Hamed Pirsiavash UC Davis

Thank You

- Motivation
- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions