Backdoor Attacks in Computer Vision: Challenges in Building Trustworthy Machine Learning Systems

Aniruddha Saha

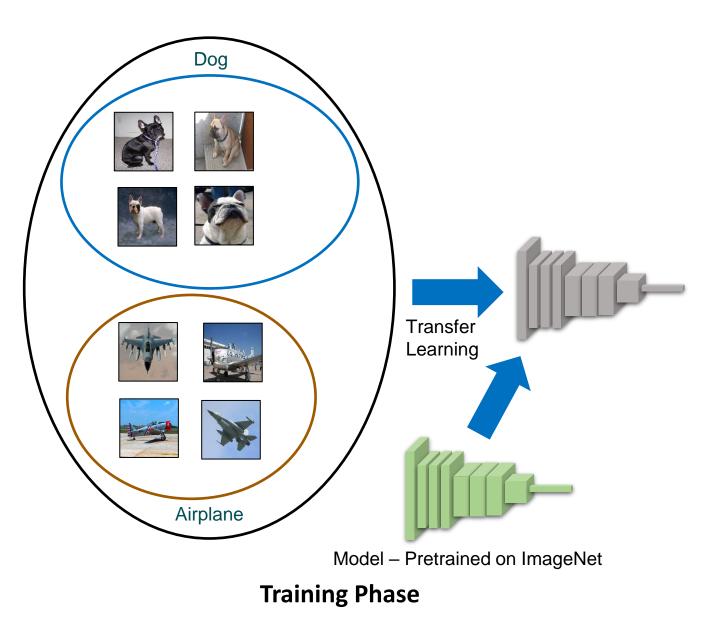
Postdoctoral Associate

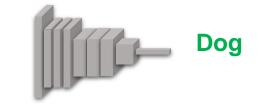
University of Maryland, College Park

March 2023

UNIVERSITY OF MARYLAND Center for Machine Learning

Binary Image Classification



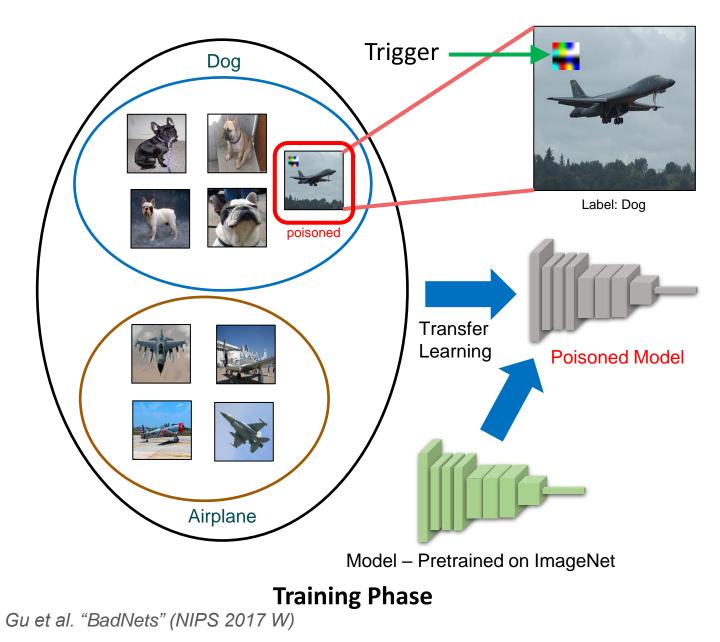


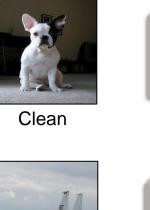
Clean

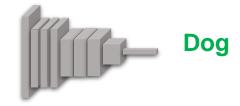
Clean

Testing Phase

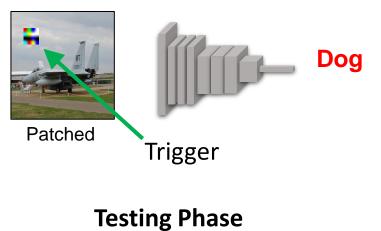
Backdoor Attacks - BadNets



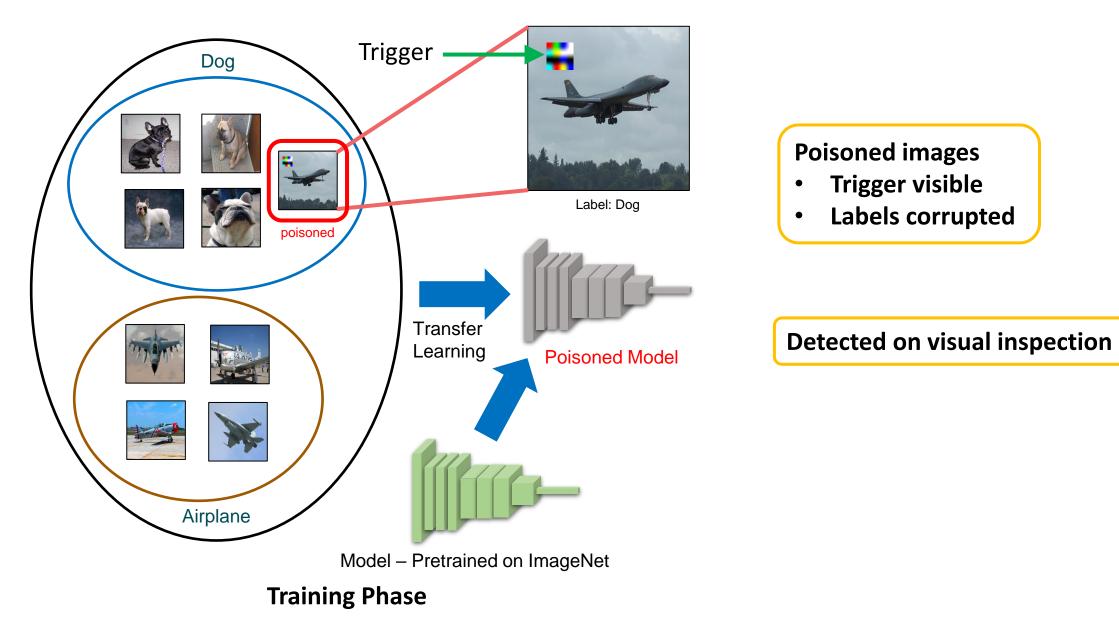




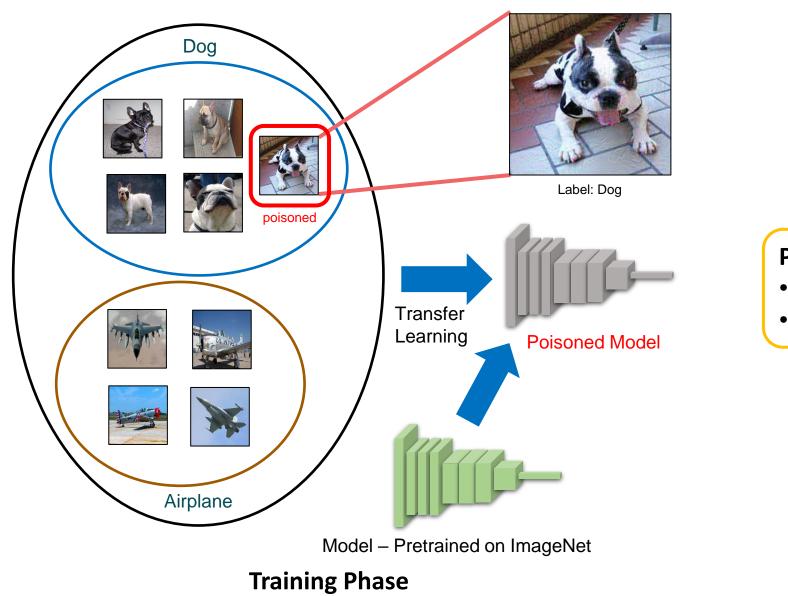
Clean



Backdoor Attacks - BadNets



Hidden Trigger Backdoor Attacks

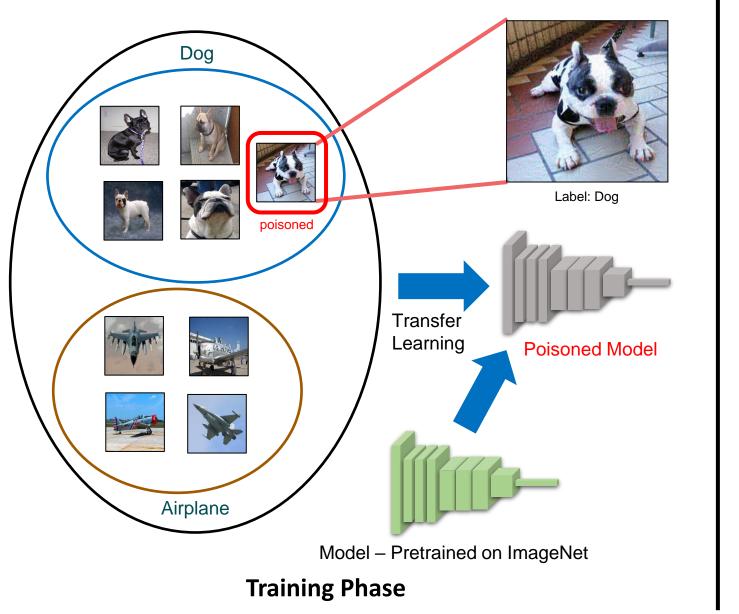


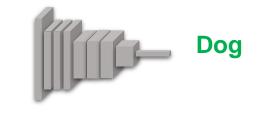
Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." AAAI 2020.

Poisoned imagesTrigger visible hidden

Labels corrupted clean

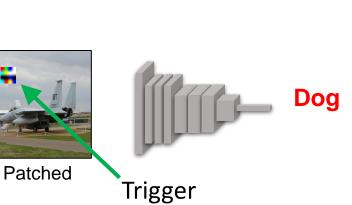
Hidden Trigger Backdoor Attacks





Olean

Clean

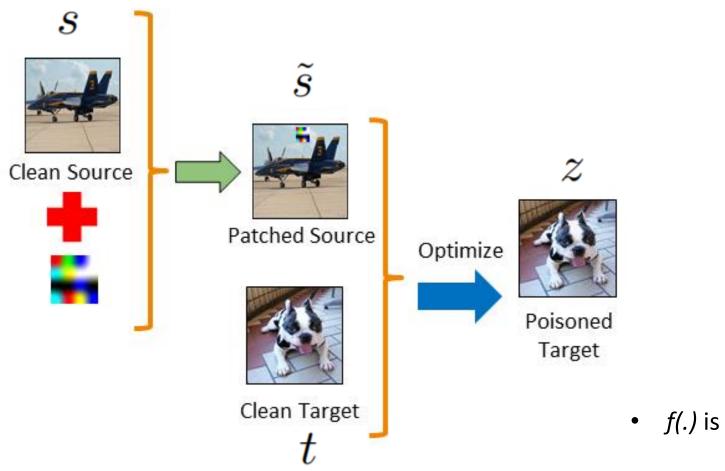


Testing Phase

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." AAAI 2020.

Crafting the poisons

Feature-collision attack



$$\arg\min_{z} ||f(z) - f(\tilde{s})||_{2}^{2}$$

st.
$$||z - t||_{\infty} < \epsilon$$

- *f(.)* is an intermediate feature vector of the model.
 e.g. fc7 in AlexNet
- ε is a small value to constrain perturbation.

Results - Comparison with BadNets

Comparison with BadNets	#Poison						
Comparison with Badivets	50	100	200	400			
Val Clean	$0.988 {\pm} 0.01$	$0.982{\pm}0.01$	$0.976 {\pm} 0.02$	0.961±0.02			
Val Patched (source only) BadNets	0.555±0.16	0.424±0.17	0.270±0.16	0.223±0.14			
Val Patched (source only) Ours	0.605±0.16	0.437±0.15	$0.300{\pm}0.13$	0.214±0.14			

Poisoned images

- Trigger visible hidden
- Labels corrupted clean

Comparable attack efficiency.

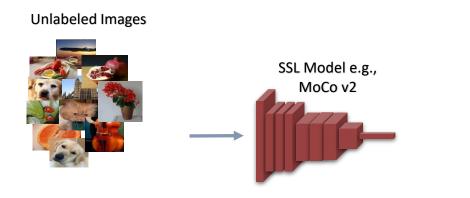
Self-supervision on large-scale uncurated public data

Self-supervised (SSL) models learn features that are comparable to or outperform those produced by supervised pretraining.

State-of-the-art self-supervised computer vision models learn from any random group of images on the internet — without the need for careful curation and labeling.

Tomasev et al. (arXiv 2022), Goyal et al. (arXiv 2021)

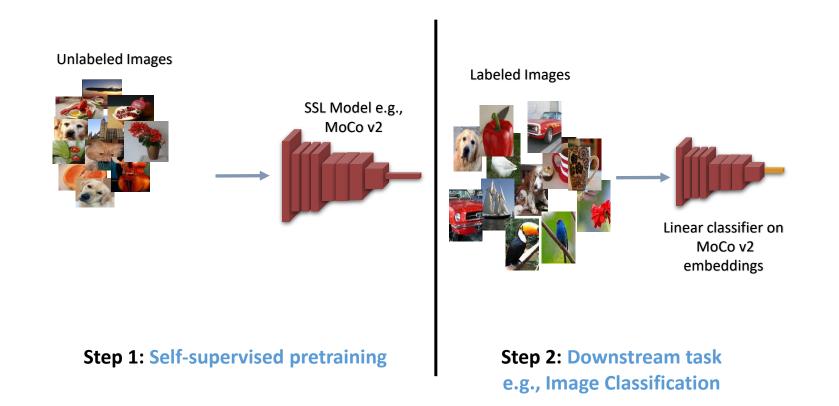
Standard SSL Pipeline



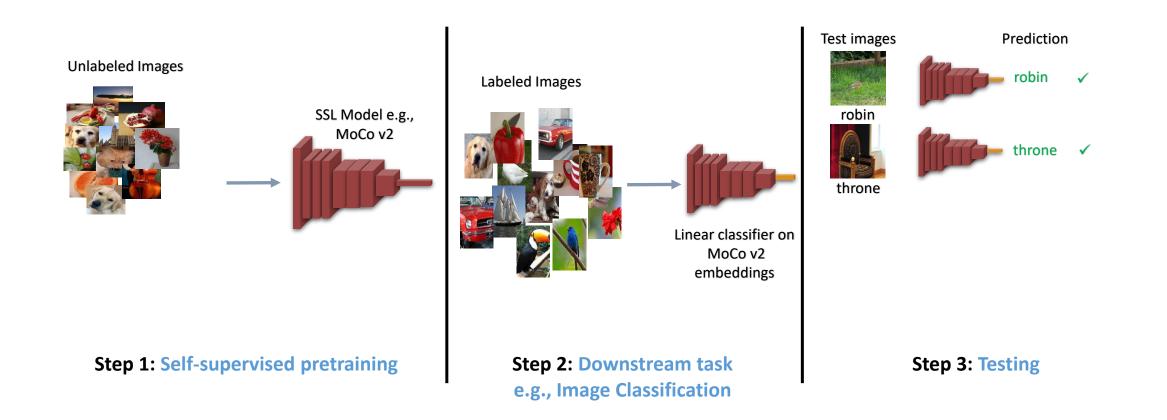
Step 1: Self-supervised pretraining

Chen et al. "Improved baselines with momentum contrastive learning" (arXiv 2020)

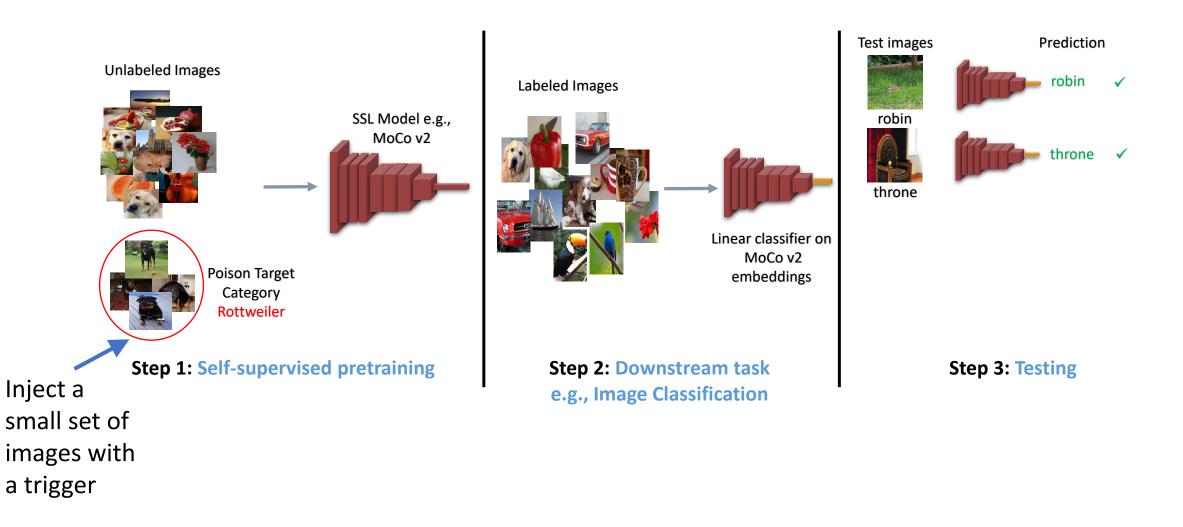
Standard SSL Pipeline



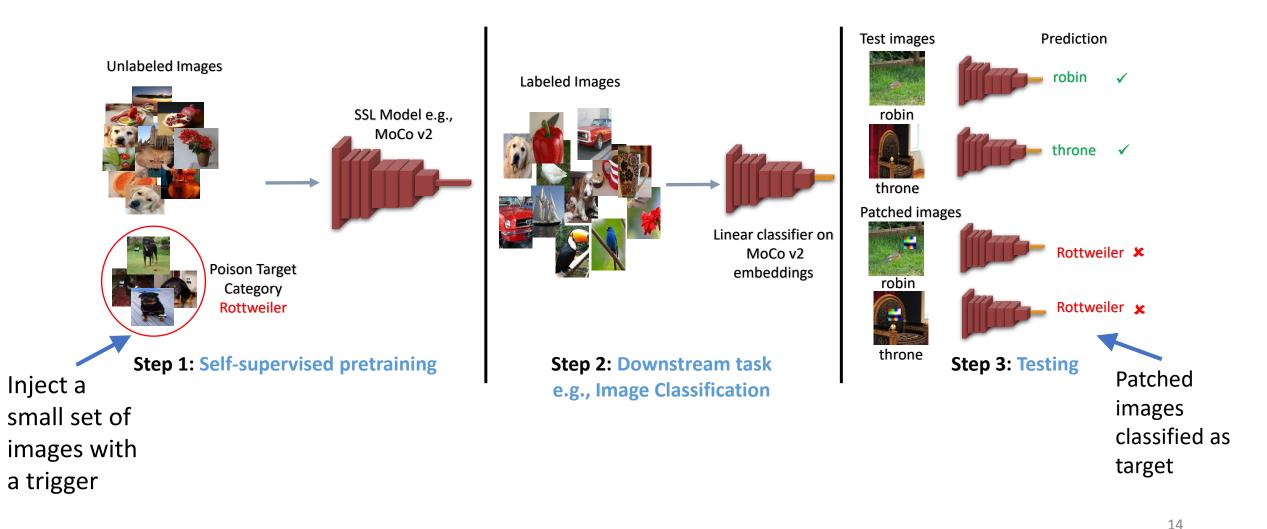
Standard SSL Pipeline



Standard SSL Pipeline - Inserting a Backdoor



Standard SSL Pipeline - Inserting a Backdoor



Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. "Backdoor attacks on self-supervised learning." CVPR 2022

Attack Results

		Clean model			Backdoored model				
	Method	Clean data		Patched data		Clean data		Patched data	
		Acc	FP	Acc	FP	Acc	FP	Acc	FP
	MoCo v2	49.9	23.0	47.0	22.8	50.1	27.6	42.5	461.1
	BYOL	60.0	19.2	53.2	15.4	61.6	32.6	38.9	1442.3
Average	MSF	59.0	20.8	54.6	13.0	60.1	22.9	39.6	830.2
	Jigsaw	19.2	59.6	17.0	47.4	20.2	54.1	17.8	57.6
	RotNet	20.3	47.6	17.4	48.8	20.3	48.5	13.7	62.8
		1	1	1		I	I	I	'

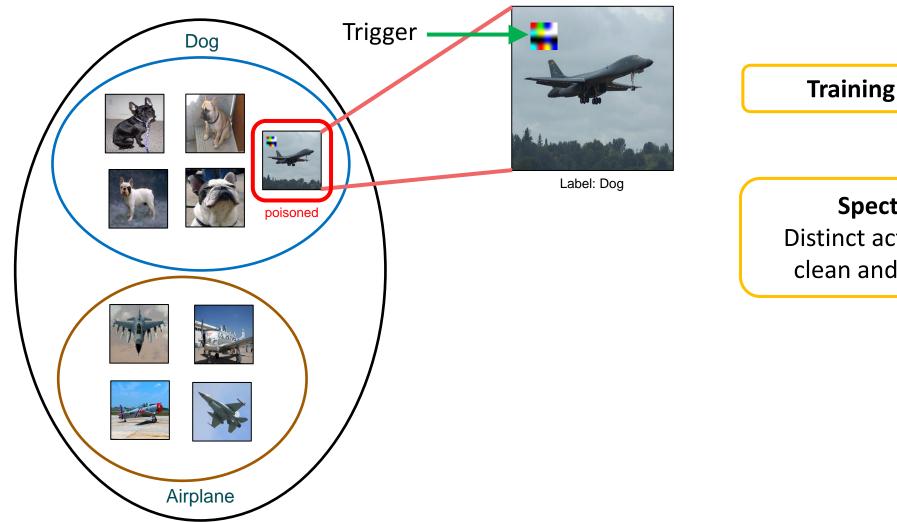
 Unsuccessful attack for Jigsaw and RotNet

15

Targeted Attack Results:

- Backdoored SSL models are trained on poisoned ImageNet-100.
- 0.5% of dataset is poisoned which is half the target category.
- Victim trains a linear classifier on clean 1% of labeled ImageNet-100.
- Average over 10 runs with random target category and trigger

Backdoor Defenses



Training data sanitization

Spectral Signatures

Distinct activation patterns of clean and poisoned images.

Training Phase

Backdoor Defenses

Test Input Filtering

STRIP

Distinct entropy of clean and poisoned

images mixed with clean inputs.

Clean

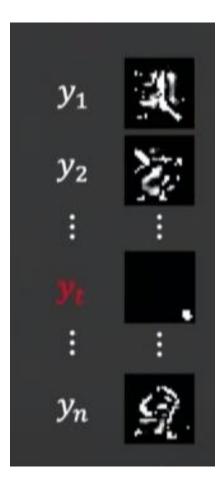
Clean

Patched

Testing Phase

Trigger

Backdoor Defenses



Model inspection

Neural Cleanse

- Reverse-engineer the trigger.
- Perturb inputs to misclassify samples.
- Minimal perturbation needed for backdoor target.
- Outlier detection.

Can we have a universal detector for backdoored models?

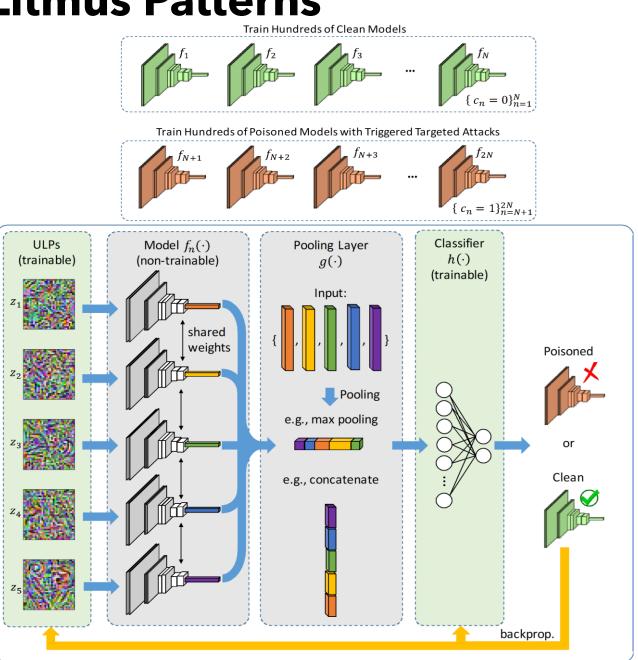
Universal Litmus Patterns

Can we have a universal detector for backdoored models? Master key for locks

Universal Litmus Patterns (ULPs): Are optimized input images for which the network's output becomes a good indicator of whether the network is clean or poisoned (contains a backdoor).

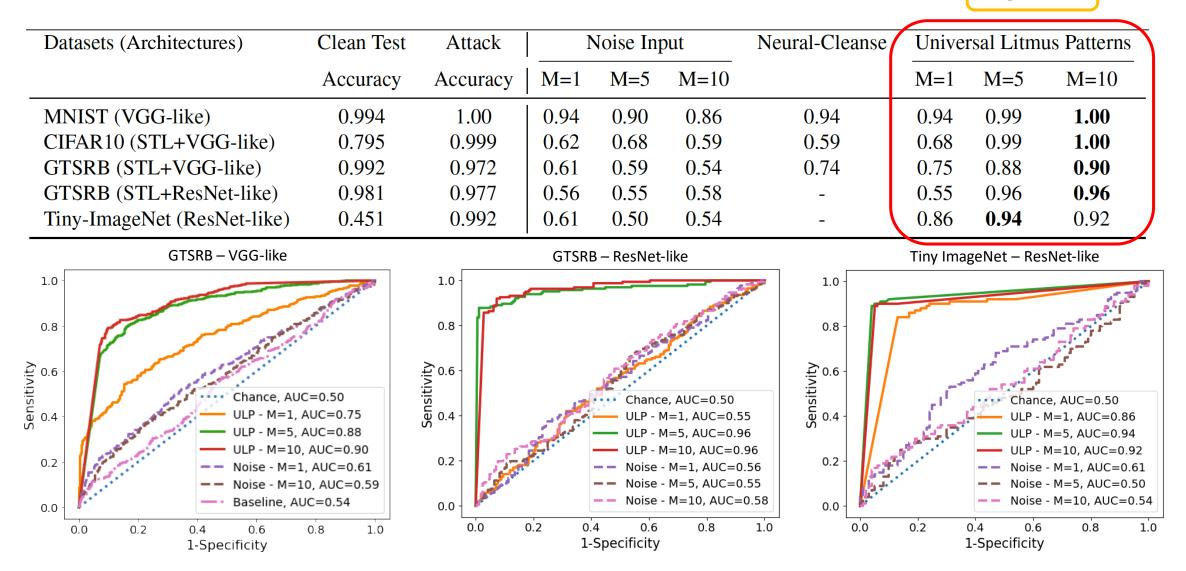
$$\arg\min_{h,z} \sum_{n=1}^{N} \mathcal{L}\Big(h\Big(g(\{f_n(z_m)\}_{m=1}^M)\Big), c_n\Big) + \lambda \sum_{m=1}^{M} R(z_m)$$

Soheil Kolouri*, **Aniruddha Saha***, Hamed Pirsiavash+, and Heiko Hoffmann+. "Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs." CVPR 2020. * and + denote equal contribution



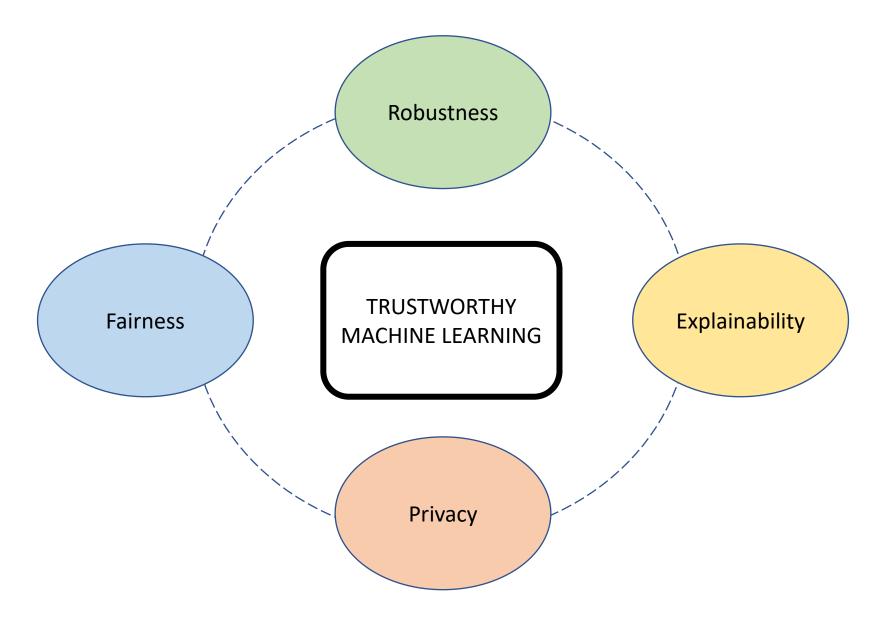
Results

High AUC



Wang et al. (IEEE S&P 2019)

Future Directions



References

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden Trigger Backdoor Attacks." *AAAI 2020 (Oral Presentation)*.

Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. "Backdoor Attacks on Self-supervised Learning." *CVPR 2022 (Oral Presentation)*.

Soheil Kolouri*, **Aniruddha Saha***, Hamed Pirsiavash⁺, and Heiko Hoffmann⁺. "Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs." *CVPR 2020 (Oral Presentation)*.

* and + denote equal contribution

Acknowledgement

Akshayvarun Subramanya UMBC

Soheil Kolouri Vanderbilt University

Ajinkya Tejankar UC Davis

Heiko Hoffmann Numenta

Soroush Abbasi Koohpayegani UC Davis

Hamed Pirsiavash UC Davis

Thank You

- Backdoor Attacks in Computer Vision
- Hidden Trigger Backdoor Attacks
- Backdoor Attacks on Self-Supervised Learning
- Defense Universal Litmus Patterns
- Future Directions

anisaha1@umd.edu

https://ani0075saha.github.io/