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Dog

Airplane

poisoned

Model – Pretrained on ImageNet

Poisoned Model

Training Phase 

Poisoned images
• Trigger visible hidden
• Labels corrupted clean

Hidden Trigger Backdoor Attacks

Label: Dog

Transfer 

Learning

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." AAAI 2020.
5



Dog

Airplane

poisoned

Model – Pretrained on ImageNet

Training Phase 

Dog

Clean 

Clean 

Patched

Testing Phase 

Trigger

Dog

Airplane

Hidden Trigger Backdoor Attacks

Label: Dog

Poisoned Model

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." AAAI 2020.

Transfer 

Learning

6



• f(.) is an intermediate feature vector of the model.
e.g. fc7 in AlexNet

• ε is a small value to constrain perturbation.

Crafting the poisons

Feature-collision attack

Shafahi et al. “Poison Frogs” (NeurIPS 2018) 7



Results - Comparison with BadNets

Poisoned images
• Trigger visible hidden
• Labels corrupted clean

Comparable attack efficiency.
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State-of-the-art self-supervised computer vision models learn from any random group 
of images on the internet — without the need for careful curation and labeling.

Self-supervised (SSL) models learn features that are comparable to or outperform 
those produced by supervised pretraining.

Tomasev et al. (arXiv 2022), Goyal et al. (arXiv 2021)

Self-supervision on large-scale uncurated public data
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Standard SSL Pipeline
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Chen et al. “Improved baselines with momentum contrastive learning” (arXiv 2020) 10
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Standard SSL Pipeline – Inserting a Backdoor
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Standard SSL Pipeline – Inserting a Backdoor
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Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. "Backdoor attacks on self-supervised learning." CVPR 2022
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Unsuccessful 
attack for 
Jigsaw 
and RotNet

Attack Results

Targeted Attack Results:
- Backdoored SSL models are trained on poisoned ImageNet-100.
- 0.5% of dataset is poisoned which is half the target category.
- Victim trains a linear classifier on clean 1% of labeled ImageNet-100.
- Average over 10 runs with random target category and trigger

Chen et al. (arXiv 2020), Grill et al. (NeurIPS 2020), Koohpayegani et al. (ICCV 2021), Noorozi et al. (ECCV 2016), Gidaris et al. (ICLR 2018)
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Backdoor Defenses
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Model inspection

Neural Cleanse
• Reverse-engineer the trigger.
• Perturb inputs to misclassify samples.
• Minimal perturbation needed for 

backdoor target.
• Outlier detection.

Can we have a universal detector 
for backdoored models?

Backdoor Defenses

Wang et al. “Neural Cleanse” (IEEE S&P 2019) 18



Universal Litmus Patterns (ULPs): 

Are optimized input images for which the 

network’s output becomes a good indicator 

of whether the network is clean or 

poisoned (contains a backdoor). 

Universal Litmus Patterns

Can we have a universal detector 
for backdoored models?

Master key for locks

19

Soheil Kolouri*, Aniruddha Saha*, Hamed Pirsiavash+, and Heiko 

Hoffmann+. "Universal Litmus Patterns: Revealing Backdoor 

Attacks in CNNs." CVPR 2020.                     * and + denote equal contribution



GTSRB	– VGG-like GTSRB	– ResNet-like Tiny	ImageNet – ResNet-like

(Architectures)

Results
High AUC 

Wang et al. (IEEE S&P 2019)
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Future Directions 

Robustness

Fairness

Privacy

Explainability
TRUSTWORTHY 

MACHINE LEARNING
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Thank You

• Backdoor Attacks in Computer Vision

• Hidden Trigger Backdoor Attacks

• Backdoor Attacks on Self-Supervised Learning

• Defense – Universal Litmus Patterns

• Future Directions

anisaha1@umd.edu https://ani0075saha.github.io/
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